Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
ZHU Tong, YANG Shi-peng, TAN Wei-qiang, WANG Kai-jun. DEGRADATION OF 2,4,6-TRICHLOROPHENOL BY UV/O3/TiO2 COUPLING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 7-13. doi: 10.13205/j.hjgc.202103002
Citation: ZHU Tong, YANG Shi-peng, TAN Wei-qiang, WANG Kai-jun. DEGRADATION OF 2,4,6-TRICHLOROPHENOL BY UV/O3/TiO2 COUPLING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 7-13. doi: 10.13205/j.hjgc.202103002

DEGRADATION OF 2,4,6-TRICHLOROPHENOL BY UV/O3/TiO2 COUPLING PROCESS

doi: 10.13205/j.hjgc.202103002
  • Received Date: 2020-06-16
    Available Online: 2021-07-19
  • This paper broke the technical bottleneck of low ozone utilization of advanced oxidation technology based on ozone, through constructing a reaction system of UV/O3/TiO2 coupling process. The reaction mechanism of UV/O3/TiO2 coupling process was analyzed by ESR and fluorescence probe method, and it was clear that the self recycling of oxygen produced by ozone chain reaction in the reaction system was the main reason to improve ozone utilization. Taking 2,4,6-trichlorophenol as the target pollutant, through the analysis of initial concentration, contact time, pH, catalyst dosage and other factors, the degradation effect of UV/O3 and UV/TiO2 processes was compared, which highlighted the technical advantages of UV/O3/TiO2 coupling process. The results showed that the mineralization rate of 2,4,6-trichlorophenol solution by UV/TiO2 and UV/O3 was 12.65% and 51.54% in the same condition, and the reaction rate constant was 0.0058 min-1 and 0.1956 min-1 respectively. The mineralization rate of 2,4,6-trichlorophenol by UV/O3/TiO2 was 82.97% and the reaction rate constant was 0.2893 min-1. The utilization ratio of ozone was increased by 11.7% in the coupling process with good adaptability in the wide range of pH=3~11. The result could provide data support for theoretical research conclusion.
  • loading
  • [1]
    LIU B, CHEN B, ZHANG B Y, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons in offshore produced water:effects of water matrix[J]. Journal of Environmental Engineering, 2016, 142(11):04016054.
    [2]
    LIU B, CHEN B, LEE K, et al. Removal of naphthalene from offshore produced water through immobilized nano-TiO2 aided photo-oxidation[J]. Water Quality Research Journal of Canada, 2016, 51(3):246-255.
    [3]
    李贞燕, 陈冰. 纳米二氧化钛光催化氧化油田采出水中萘和芴的影响因素分析[J]. 环境工程学报, 2015, 9(5):2106-2112.
    [4]
    李贞燕, 陈冰. 油田采出水中萘和芴的紫外光催化和·OH氧化降解过程影响因素与条件优化分析[J]. 环境工程, 2015, 33(10):31-34.
    [5]
    LIU B, CHEN B, ZHANG B Y. Oily wastewater treatment by nano-TiO2-induced photocatalysis:seeking more efficient and feasible solutions[J]. IEEE Nanotechnology Magazine, 2017, 11(3):4-15.
    [6]
    GOMES J F, BEDNARCZYK K, GMUREK M, et al. Noble metal-TiO2, supported catalysts for the catalytic ozonation of parabens mixtures[J]. Process Safety & Environmental Protection, 2017, 111:148-159.
    [7]
    MARTINS R C, QUINTA-FERREIRA R M. Screening of ceria-based and commercial ceramic catalysts for catalytic ozonation of simulated olive mill wastewaters[J]. Industrial & Engineering Chemistry Research, 2009, 48(3):1196-1202.
    [8]
    CENTI G, PERATHONER S. Advanced Oxidation Processes in Water Treatment[M]. Handbook of Advanced Methods and Processes in Oxidation Catalysis:from Laboratory to Industry, 2014:251-290.
    [9]
    OFIARSKA A, PIECZYŃSKA A, FISZKA B A, et al. Pt-TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight[J]. Chemical Engineering Journal, 2016, 285:417-427.
    [10]
    VELEGRAKI T, HAPESHI E, FATTAKASSINOS D, et al. Solar-induced heterogeneous photocatalytic degradation of methyl-paraben[J]. Applied Catalysis B:Environmental, 2015,178:2-11.
    [11]
    LIN Y, FERRONATO C, DENG N, et al. Study of benzylparaben photocatalytic degradation by TiO2[J]. Applied Catalysis B Environmental, 2011, 104(3/4):353-360.
    [12]
    HUANG H, LI W. Destruction of toluene by ozone-enhanced photocatalysis:performance and mechanism[J]. Applied Catalysis B:Environmental, 2011, 102(3/4):449-453.
    [13]
    CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology:A review[J]. Water Research, 2010, 44(10):2997-3027.
    [14]
    SALIMI M, ESRAFILI A, GHOLAMI M, et al. Contaminants of emerging concern:a review of new approach in AOP technologies[J]. Environmental Monitoring and Assessment, 2017, 189(8):414.
    [15]
    余丽琴, 赵高峰, 冯敏, 等. 典型氯酚类化合物对水生生物的毒性研究进展[J].生态毒理学报,2013,8(5):658-670.
    [16]
    贺强礼, 关向杰, 黄水娥, 等. 典型酚类废水的微生物处理研究现状及其进展[J]. 环境工程, 2014,32(3):6-9.
    [17]
    宋瀚文, 王东红, 徐雄, 等. 我国24个典型饮用水源地中14种酚类化合物浓度分布特征[J]. 环境科学学报, 2014, 34(2):355-362.
    [18]
    赵德明,李敏,张建庭,等.微波强化臭氧氧化降解苯酚水溶液[J]. 化工学报,2009,60(12):3137-3141.
    [19]
    YAN G L, CHEN J, HUA Z Z. Roles of H2O2 and OH radical in bactericidal action of immobilized TiO2 thin-film reactor:an ESR study[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 207(2/3):153-159.
    [20]
    GOMES J F, LEAL I, BEDNARCZYK K, et al. Photocatalytic ozonation using doped TiO2 catalysts for the removal of parabens in water[J]. Science of the Total Environment, 2017, 609:329-340.
    [21]
    MEHRJOUEI M, MVLLER S, MÖLLER D. A review on photocatalytic ozonation used for the treatment of water and wastewater[J]. Chemical Engineering Journal, 2015, 263:209-219.
    [22]
    MERENYI G, LIND J, NAUMO V S, et al. Reaction of ozone with hydrogen peroxide (peroxone process):a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations[J]. Environmental Science & Technology, 2010, 44(9):3505-3507.
    [23]
    MOREIRA N F F, ORGE C A, RIBEIRO A R, et al. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater[J]. Water Research, 2015, 87:87-96.
    [24]
    李志健, 马兰, 景立明, 等. 2,4,6-三氯苯酚臭氧氧化特性研究[J]. 纸和造纸, 2015, 34(11):69-73.
    [25]
    CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology:a review[J]. Water Research, 2010, 44(10):2997-3027.
    [26]
    王欣, 王金翠, 殷晓梅, 等. 乙酰甲胺磷UV-TiO2/类Fenton光催化降解过程的响应面法优化[J]. 应用化工, 2013, 42(1):33-40.
    [27]
    AGUSTINA T E, ANG H M, VAREEK V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2005, 6(4):264-273.
    [28]
    刘茜, 唐飏, 李越, 等. 可见光下F-TiO2催化剂对2,4,6-三氯苯酚光催化活性研究[J].化学研究与应用,2017,29(6):761-767.
    [29]
    殷晓梅, 王欣, 王金翠, 等. 纳米TiO2-UV光催化降解乙酰甲胺磷影响因素的研究[J]. 应用化工, 2012, 41(9):1508-1512.
    [30]
    王旭东, 唐婧, 王磊, 等. 纳米TiO2光催化-超滤法处理模拟二级出水[J]. 环境工程学报, 2016,10(4):1615-1620.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (276) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return