Citation: | LIU Yan, YANG Min, CHEN Hong, JIANG Zhao-hui, ZHAO Wen-yu, WANG Hong, ZHANG Jun-ya. ENHANCEMENT AND MECHANISM OF MIXED ALGAE CULTIVATION FOR TREATMENT OF KITCHEN WASTE DIGESTATE EFFLUENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 54-60,67. doi: 10.13205/j.hjgc.202103008 |
[1] |
ZHANG C S, SU H J, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38:383-392.
|
[2] |
OSWALD W J, GOTAAS H B, GOLUEKE C G, et al. Algae in waste treatment[J]. Sewage and Industrial Wastes, 1957, 29(4):437-455.
|
[3] |
KHAN A, SHAHID A, CHENG H, et al. Omics technologies for microalgae-based fuels and chemicals; challenges and opportunities[J]. Protein and Peptide Letters, 2018, 25(2):99-107.
|
[4] |
CHENG J, YE Q, XU J, et al. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment[J]. Bioresource Technology, 2016, 216:273-279.
|
[5] |
BIDDANDA B, BENNER R. Carbon nitrogen and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton[J]. Limnology and Oceanography, 1997, 42:506-518.
|
[6] |
LÓPEZ-SERNA R, GARCÍA D, BOLADO S, et al. Photobioreactors based on microalgae-bacteria and purple phototrophic bacteria consortia:a promising technology to reduce the load of veterinary drugs from piggery wastewater[J]. Science of the Total Environment,2019, 692:259-266.
|
[7] |
PRATT R. Studies on Chlorella vulgaris.V. some properties of the growth-inhibitor formed by Chlorella cells[J]. American Journal of Botany, 1942, 29(2):142-148.
|
[8] |
冯思然,朱顺妮,王忠铭. 微藻污水处理研究进展[J].环境工程, 2019,37(4):57-62.
|
[9] |
SHAHID A,MALIK S,ZHU H, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation:a review[J]. The Science of the Total Environment, 2020,704:135303.
|
[10] |
CHINNASAMY S, BHATNAGAR A, HUNT R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications[J]. Bioresource Technology, 2010, 101:3097-3105.
|
[11] |
HUY M, KUMAR G, KIM H W, et al. Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery[J]. Bioresource Technology, 2018, 247:576-581.
|
[12] |
MICHELON W, DA SILVA M L B, MEZZARI M P, et al. Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate[J]. Applied Biochemistry and Biotechnology, 2016, 178:1407-1419.
|
[13] |
CARDINALE B J. Biodiversity improves water quality through niche partitioning[J]. Nature, 2012, 472:86-89.
|
[14] |
PHATARPEKAR P V, SREEPADA R A, PEDNEKAR C, et al. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures[J]. Aquaculture, 2000, 181(1):141-155.
|
[15] |
UCHIDA T, TODA S, MATSUYAMA Y, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture[J]. Journal of Experimental Marine Biology and Ecology, 1999, 241(2):285-299.
|
[16] |
范婧,周北海,张鸿涛,等. 再生水补充经管水体中藻类的生长比较[J].环境科学研究, 2012,25(5):573-577.
|
[17] |
QIAN Y P,LI X T,TIAN R N. Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species[J]. Ecotoxicology and Environmental Safety, 2019, 168:401-407.
|
[18] |
ZHANG T Y, YU Y, WU Y H, et al. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp LX1 on its growth and lipid production[J]. Bioresource Technology, 2013, 146:643-648.
|
[19] |
WANG M, YANG H, ERGAS S J, et al. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR)[J]. Water Research, 2015, 87:38-48.
|
[20] |
YANG S, XU J, WANG Z M, et al. Cultivation of oleaginous microalgae for removal of nutrients and heavy metals from biogas digestates[J]. Journal of Cleaner Production, 2017, 164:793-803.
|
[21] |
刘祥,王婧瑶,吴娟娟,等. 微藻固定化条件优化及其污水氨氮去除潜力分析[J]. 环境科学,2019, 40(7):3126-3134.
|
[22] |
罗智展,舒琥,许瑾,等. 利用微藻处理污水的研究进展[J]. 水处理技术, 2019, 45(10):17-39.
|
[23] |
TORU Y,NAOYA S,KAZUTOSHI I, et al. Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress[J]. Journal of Bioscience and Bioengineering, 2019, 128(6):751-754.
|
[24] |
WHITTON R, MÉVEL A L, PIDOU M, et al. Influence of microalgal N and P composition on wastewater nutrient remediation[J]. Water Research, 2016, 91:371-378.
|
[25] |
ZHOU W G, MIN M, LI Y C, et al. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation[J]. Bioresource Technology, 2012, 110:448-455.
|
[26] |
SINGH G, THOMAS P B. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor[J]. Bioresource Technology, 2012, 117:80-85.
|
[27] |
WÁGNER D S, VALVERDE-PÉREZ B, SAEBØ M, et al. Towards a consensus-based biokinetic model for green microalgae-The ASM-A[J]. Water Research, 2016, 103:485-499.
|
[28] |
WU Y H, ZHU S F, YU Y, et al. Mixed cultivation as an effective approach to enhance microalgal biomass and triacylglycerol production in domestic secondary effluent[J]. Chemical Engineering Journal, 2017, 328:665-672.
|
[29] |
MOHAMMAD R,QU M X,MD A A, et al. Investigating the potentiality of Scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater[J]. Bioresource Technology, 2020, 299:122571.
|
[30] |
ANSARI F A,RAVINDRAN B,GUPTA S K, et al. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae[J]. Journal of Environmental Management, 2019, 240:293-302.
|
[31] |
刘峰. 雨生红球藻优良藻株的诱变选育及其培养基的氮磷浓度的优化[D].青岛:中国海洋大学,2015.
|