Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
Citation: YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010

ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT

doi: 10.13205/j.hjgc.202103010
  • Received Date: 2020-03-16
    Available Online: 2021-07-19
  • In order to study the dominant microorganisms of activated sludge in AAO biochemical system at high Cl- concentration, high-throughput sequencing technology was used to analyze the microbial structure of sludge in different periods. The results showed that the microbial community structure changed obviously when the Cl- concentration increased from 1000 mg/L to 5000 mg/L. Persistent OTUs accounted for 90.59% of the total sequence. The relative abundance of Proteobacteria in the bacterial community was stable at 40% above. The relative abundance of Chiorobi increased from 6.11% to 16.13%. Generic level analysis of microorganisms showed that Methyloceanibacter (16.94%~27.44%) was the main organic matter removal bacteria under the condition of high salinity. Ignavibacterium (18.43%~26.78%) played an important role in the removal of sulfides. Dechloromonas (1.52%~3.05%), Nitrospirae (1.9%~8.84%) and Nitrosomonas (about 1%) was the main bacteria to remove nitrogen pollutants.
  • loading
  • [1]
    WEN Y, JIN Y X, WANG J Y, et al. MiSeq sequencing analysis of bacterial community structures in wastewater treatment plants[J]. Polish Journal of Environmental Studies, 2015,24(4):1809-1815.
    [2]
    FAN X Y, GAO J F, PAN K L, et al. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant[J]. RSC Advances, 2017,7(89):56317-56327.
    [3]
    SHU D T, HE Y L, YUE H, et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016,290:21-30.
    [4]
    JU F, LI B, MA L P, et al. Antibiotic resistance genes and human bacterial pathogens:co-occurrence, removal, and enrichment in municipal sewage sludge digesters[J]. Water Research, 2016,91:1-10.
    [5]
    高晨晨, 郑兴灿, 游佳, 等. 城市污水脱氮除磷系统的活性污泥菌群结构特征[J].中国给水排水, 2015,31(23):37-42.
    [6]
    CHEN Y, LAN S, WANG L, et al. A review:driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017,174:173-182.
    [7]
    HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013,316:23-30.
    [8]
    WANG Z C, GAO M C, SHE Z L, et al. Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor[J]. Separation and Purification Technology, 2015,144:223-231.
    [9]
    WILSON L P, HL L, ES S, et al. Microbial community acclimation enhances waste hydrolysis rates under elevated ammonia and salinity conditions[J]. Bioresour Technol, 2013,146:15-22.
    [10]
    KULKARNI P. Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR)[J]. Bioresource Technology, 2013,128:273-280.
    [11]
    FIGUEROA M, MOSQUERA-CORRAL A, CAMPOS J L, et al. Treatment of saline wastewater in SBR aerobic granular reactors[J]. Water Science and Technology, 2008,58(2):479-485.
    [12]
    BASSIN J P, KLEEREBEZEM R, MUYZER G, et al. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors[J]. Applied Microbiology Biotechnology, 2012,93(3):1281-1294.
    [13]
    XIA Y, WEN X H, ZHANG B, et al. Diversity and assembly patterns of activated sludge microbial communities:a review[J]. Biotechnology Advances, 2018,36(4):1038-1047.
    [14]
    KLINDWORTH A, PRUESSE E, SCHWEER T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Research, 2013,41(1):e1.
    [15]
    SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied Environmental Microbiology, 2009,75(23):7537-7541.
    [16]
    DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied Environmental Microbiology, 2006,72(7):5069-5072.
    [17]
    樊晓燕, 高景峰, 王时杰, 等. 同步脱氮除磷系统中两种颜色好氧颗粒污泥的微生物群落特征[J].环境科学研究, 2017,30(8):1287-1294.
    [18]
    CALDERÓN K, SPOR A, BREUIL M C, et al. Effectiveness of ecological rescue for altered soil microbial communities and functions[J]. The ISME Journal, 2016,11(1):272-283.
    [19]
    MAR J S, LAMERE B J, LIN D L, et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients[J]. mBio, 2016,7(4):e01072-16.
    [20]
    MITTER E K, DE FREITAS J R, GERMIDA J J. Bacterial root microbiome of plants growing in oil sands reclamation covers[J]. Frontiers in Microbiology, 2017,8:849.
    [21]
    VAN DER GAST C J, WALKER A W, STRESSMANN F A, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities[J]. The ISME Journal, 2011,5(5):780-791.
    [22]
    ZHANG T, SHAO M F, YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012,6(6):1137-1147.
    [23]
    YOON D N, PARK S J, KIM S J, et al. Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge[J]. The Journal of Microbiology, 2010,48(3):275-283.
    [24]
    FUERST J A. Intracellular compartmentation in planctomycetes[J]. Annual Review of Microbiology, 2005,59(1):299-328.
    [25]
    JO Y J, OH Y S, WOO S, et al. Metagenomic analysis of bacterial communities associated with four Ecklonia cava populations, including dokdo island population[J]. Toxicology and Environmental Health Sciences, 2019,11(1):11-18.
    [26]
    RAMITHA A X Y, CHAN X Y, YIN W Y, et al. Metagenomic analysis of microbial diversity of tropical sea water of georgetown coast, malaysia[J]. Life Science Journal, 2013,10(3):2392-2396.
    [27]
    VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004,304(5667):66-74.
    [28]
    YU K, ZHANG T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. PLoS ONE, 2012,7(5):e38183.
    [29]
    CHEN S, CHENG H C, WYCKOFF K N, et al. Linkages of firmicutes and bacteroidetes populations to methanogenic process performance[J]. Journal of Industrial Microbiology Biotechnology, 2016,43(6):771-781.
    [30]
    VEKEMAN B, KERCKHOF F, CREMERS G, et al. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase[J]. Environmental Microbiology, 2016,18(12):4523-4536.
    [31]
    MIO T T K, TAKAO Y, SATOSHI H, et al. Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2014,64(2):462-468.
    [32]
    BLACKWELL N, PERKINS W, PALUMBO-ROE B, et al. Seasonal blooms of neutrophilic Betaproteobacterial Fe(Ⅱ) oxidizers and Chlorobi in iron-rich coal mine drainage sediments[J]. FEMS Microbiology Ecology, 2019,95(10):1-14.
    [33]
    LIU Z F, FRIGAARD N U, VOGL K, et al. Complete genome of ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum chlorobi[J]. Frontiers in Microbiology, 2012,3:185.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return