Citation: | LIU Xiu, LIU Li-heng, LIU Rui, HUANG Lin, LIN Hua, WEI Zhong-hua, WANG Dun-qiu. EXPERIMENTAL STUDY ON Cr REMOVAL FROM SIMULATED WASTEWATER BY CAGE CORE BLACK CARBON BEADS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 75-81. doi: 10.13205/j.hjgc.202103011 |
[1] |
RANGABHASHIYAM S, BALASUBRAMANIAN P. The potential of lignocellulosic biomass precursors for biochar production:performance, mechanism and wastewater application:a review[J]. Industrial Crops and Products, 2019, 128:405-423.
|
[2] |
WAN Z H, CHO D W, TSANG D C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution, 2019, 247:410-420.
|
[3] |
DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:coexistence effect and mechanism[J]. Science of the Total Environment, 2018, 642:505-515.
|
[4] |
YU J D, JIANG C Y, QUAN Q Q, et al. Enhanced removal of Cr(Ⅵ) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere, 2018, 195:632-640.
|
[5] |
DIAO Z H, XU X R, CHEN H, et al. Simultaneous removal of Cr(Ⅵ) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2016, 316:186-193.
|
[6] |
WU J, ZHENG H, ZHANG F, et al. Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(Ⅵ) removal[J]. Chemical Engineering Journal, 2019, 362:21-29.
|
[7] |
LI P G, FU T, GAO X Y, et al. Adsorption and reduction transformation behaviors of Cr(Ⅵ) on mesoporous polydopamine/titanium dioxide composite nanospheres[J]. Journal of Chemical & Engineering Data, 2019, 64:2686-2696.
|
[8] |
CHAKRABARTY T, AFRIN R, MIA M Y, et al. Phytoremediation of Chromium and some chemical parameters from Tannery effluent by using water Hyacinth (Eichhornia craassipes)[J]. Research in Agriculture Livestock & Fisheries, 2017, 4(3):151-156.
|
[9] |
MAULION R V,HIWATIG K B,RENDON C J L, et al. Utilization of water hyacinth (Eichhorniacrassipes) for phytoremediation of hexavalent chromium in simulated wastewater[J]. Asia Pacific Journal of Multidisciplinary Research, 2015, 3(4):117-123.
|
[10] |
CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767.
|
[11] |
ARSLANOGLU H, KAYA S, TVMEN F. Cr(Ⅵ) adsorption on low-cost activated carbon developed from grape marc-vinasse mixture[J]. Particulate Science and Technology, 2019,11:1-14.
|
[12] |
WANG X D, LI C X, LI Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J].Ecotoxicology and Environmental Safety, 2019, 168:45-52.
|
[13] |
WANG R, YOSHIMASA A, MOTOI M. Surface properties and water vapor adsorption-desorption characteristics of bamboo-based activated carbon[J]. Journal of Analytical and Applied Pyrolysis,2013, 104:667-674.
|
[14] |
MOTOHIDE H, YOSHIMASA A, THIRAVETYAN P, et al. Preparation of bamboo chars and bamboo activated carbons to remove color and COD from Ink wastewater[J]. Water Environment Research, 2016, 88(1):87-96.
|
[15] |
BEI C, YOSHIMASA A, MOTOI M. Preparation of bamboo-based oxidized biochar for simultaneous removal of Cd(Ⅱ) and Cr(Ⅵ) from aqueous solutions[J]. Desalination and Water Treatment, 2019, 168:269-281.
|
[16] |
BING Z, YUNHAI W, PENG F. Bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane for the adsorption of acid fuchsin dye:optimization by response surface methodology and the adsorption mechanism[J]. Journal of Applied Polymer Science, 2019, 136(27):47728.
|
[17] |
DUAN S B, WEI M, PAN Y Z, et al. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (Ⅵ) removal from solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80:835-841.
|
[18] |
YU J W, CHI C, ZHU B, et al. High adsorptivity and recycling performance activated carbon fibers for Cu(Ⅱ) adsorption[J]. Science of the Total Environment, 2020, 700:134412.
|
[19] |
TANG Q, WANG K T, MUHAMMAD Y, et al. Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+ from wastewater[J]. Journal of Cleaner Production, 2018, 193:351-362.
|
[20] |
SHARFILAHI S, GEETANJALI R, CHAUDHRYSAIF A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution:Thermodynamic, kinetic and isotherm studies[J]. Journal of Molecular Liquids, 2018, 264:275-284.
|
[21] |
LIANG C H, ZHANG X D, FENG P, et al. ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics[J]. Chemical Engineering Journal, 2018, 344:95-104.
|
[22] |
LIU L H, TANG C W, PENG Y L, et al. Modification of bentonite by Al/Mg-polymeric hydroxy for Cu2+, Cd2+, and Pb2+ removal from aqueous solutions[J]. Desalination and Water Treatment, 2019, 147:243-254.
|
[23] |
WANG Y L, ZHANG N, CHEN D N, et al. Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(Ⅵ) from aqueous solutions[J]. Science of the Total Environment, 2019, 682:118-127.
|
[24] |
CUI Y B, ATKINSO J D. Glycerol-derived magnetic mesoporous Fe/C composites for Cr(Ⅵ) removal, prepared via acid-assisted one-pot pyrolysis[J]. Chemosphere, 2019, 228:694-701.
|
[25] |
JISEON J, DAESUNG L. Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution:optimization using response surface methodology[J]. Science of the Total Environment, 2018, 615:549-557.
|
[26] |
YI Y H, LV J L, LIU Y, et al. Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions[J]. Journal of Molecular Liquids, 2017, 225:28-33.
|
[27] |
WANG X P, LU J, CAO B Y, et al. Facile synthesis of recycling Fe3O4/graphene adsorbents with potassium humate for Cr(Ⅵ) removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 560:384-392.
|
[28] |
SHOKRY A, TAHANAYMAN L, IBRAHIM H, et al. The development of a ternary nanocomposite for the removal of Cr(Ⅵ) ions from aqueous solutions[J]. RSC Advances, 2019, 9:39187-39200.
|
[29] |
CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767.
|
[30] |
NEMR A. Potential of pomegranate husk carbon for Cr(Ⅵ) removal from wastewater:kinetic and isotherm studies[J]. Journal of Hazardous Materials, 2009, 161(1):132-141.
|
[31] |
GAO Q Y, LIN D G, FAN Y J, et al. Visible light induced photocatalytic reduction of Cr(Ⅵ) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19.
|
[32] |
TAN C, RONG H, WANG H T, et al. Adsorption of heavy metals by biochar derived from municipal sewage sludge[J]. Journal of Tsinghua University, 2014, 54(8):1062-1067.
|
[33] |
ALI A, SAEED K. Decontamination of Cr(Ⅵ) and Mn(Ⅱ) from aqueous media by untreated and chemically treated banana peel:a comparative study[J]. Desalination & Water Treatment,2015, 3(13):3586-3591.
|
[34] |
TAO X M, WU Y H, CHA L G. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (Ⅵ) and methyl orange[J]. Environmental Science and Pollution Research, 2019, 26:19828-19842.
|
[35] |
DAKIKY M, KHAMIS M, MANASSRA A, et al. Eective adsorption of chromium (Ⅵ) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research,2002, 6(4):533-540.
|
[36] |
BABEL S, KURNIAWAN T. Cr(Ⅵ) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J]. Chemosphere,2004, 54, 951-967.
|
[37] |
ALOTHMAN Z, ALI R, NAUSHAD M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:adsorption kinetics, equilibrium and thermodynamic studies[J]. The Chemical Engineering Journal,2012, 184:238-247.
|
[38] |
UCUN H, BAYHAN K, KAYA Y. Kinetic and thermodynamic studies of thebiosorption of Cr (Ⅵ) by Pinussylvestris Linn[J]. Journal of Hazardous Materials, 2008, 153:52-59.
|
[39] |
YU S, YUAN G M, GAO H J, et al. Removal of Cr(Ⅵ) from aqueous solutions using polymer nanotubes[J]. Journal of Materials Science, 2020, 55:163-176.
|
[40] |
OGATA F, UETA E I, KAWASAKI N. Characteristics of a novel adsorbent Fe-Mgtype hydrotalcite and its adsorption capability of As(Ⅲ) and Cr(Ⅵ) from aqueous solution[J].Journal of Industrial Engineering Chemistry, 2018, 59:56-63.
|
[41] |
HVSEYIN D, KADIR S, BINGÖLBALI S. Equilibrium and kinetics characteristics of copper(Ⅱ) sorption onto gyttja[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84:147-151.
|
[42] |
DURANOǦLU D, TROCHIMCZUK A W, BEKER U. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer[J]. Chemical Engineering Journal, 2012, 187:193-202.
|
[43] |
QIANWEI L, HANJIN L, JUNJIE G, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2018, 338:62-71.
|
[44] |
SUN L, YUAN Z G, GONG W B, et al. The mechanism study of trace Cr(Ⅵ) removal from water using Fe0 nanorods modified with chitosan in porous anodic alumina[J]. Applied Surface Science, 2015, 328:606-613.
|
[45] |
ZHANG X J, ZHANG L, LI A M. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal[J]. Journal of Environmental Management, 2018, 206:989-998.
|