Citation: | DONG Yi-hua, ZHANG Xin-yue, CHEN Feng, LI Liang, SHI Xiao-chun. CONSTRUCTION OF ECOLOGICAL FLOATING ISLAND AND RESTORATION OF CAMPUS ARTIFICIAL LAKE EUTROPHICAITON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 90-96. doi: 10.13205/j.hjgc.202103013 |
[1] |
LIAO M N, YU G, GUO Y. Eutrophication in Poyang Lake (Eastern China) over the last 300 years in response to changes in climate and lake biomass[J]. PLoS One, 2017, 12(1):1-22.
|
[2] |
SCHOEN M E, XUE X B, WOOD A, et al. Cost, energy, global warming, eutrophication and local luman health impacts of community water and sanitation service options[J]. Water Research, 2017, 109(2):186-195.
|
[3] |
JIANG Q T, HE J Y, WU J P, et al. Assessing the severe eutrophication status and spatial trend in the coast waters of Zhejiang province (China)[J]. 2018, 64(1):3-17.
|
[4] |
陈昭明, 王伟, 赵迎, 等. 三峡水库支流水体富营养化现状及防治策略[J]. 环境工程, 2019, 37(4):32-37.
|
[5] |
李志刚, 朱江. 现代大学校园水景规划设计探讨[J]. 安徽农业科学, 2011, 39(29):18022-18025.
|
[6] |
VYSTAVNA Y, HEJZLAR J, KOPÁǦEK. Long-term trends of phosphorus concentrations in an artificial lake:socio-economic and climate drivers[J]. PLoS One, 2017, 12(10):1-18.
|
[7] |
康孟新, 疏童. 北方高校景观水体富营养化评价研究[J]. 东北电力大学学报, 2016, 36(5):68-72.
|
[8] |
周云龙, 黄健峰, 林嘉. 华南师范大学人工湖水体富营养化及其对策研究[J]. 华南师范大学学报(自然科学版), 2010(1):82-87.
|
[9] |
BAASTRUP-SPOHR L, SAND-JENSEN K, OLESEN S C H, et al. Recovery of lake vegetation following reduced eutrophication and acidification[J]. Freshwater Biology, 2017, 62(11):1847-1857.
|
[10] |
SMOL M. The use of membrane processes for the removal of phosphorus from wastewater[J]. Desalination and Water Treatment, 2018, 128(1):397-406.
|
[11] |
WANG S D, KONG L J, LONG J Y, et al. Adsorption of phosphorus by calcium-flour biochar:isotherm, kinetic and transformation studies[J]. Chemosphere, 2018, 195(3):666-672.
|
[12] |
NOYMA N P, MAGALHÃES L D, FURTADO L L, et al. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants ans phosphorus adsorbing natural soil and modified clay[J]. Water Research, 2016, 97(6):26-38.
|
[13] |
岳云征. 氧化剂对藻毒素的作用效果对比[J]. 化学工程与装备, 2016(9):44-45.
|
[14] |
ANSARI A A, TRIVEDI S, K, KHAN F A, et al. Phytoremediation of eutrophic waters[J]. Phytoremediation, 2015, 28(1):41-50.
|
[15] |
付惠玲. 新材料生物膜反应器净化富营养化水及其功能菌群解析[D]. 金华:浙江师范大学, 2016.
|
[16] |
LIU J L, LIU J K, ANDERSON J T, et al. Potential of aquatic macrophytes and artificial floating island for removing contaminants[J]. Plant Biosystems, 2016, 150(4):1-8.
|
[17] |
NATHALIE M G. The floating island project:self-organizing complexity[J]. Proceedings, 2017, 173(1):1-3.
|
[18] |
YEH N, YEH P, CHANG Y H. Artificial floating islands for environmental improvement[J]. Renewable and sustainable energy reviews, 2015, 47(7):616-622.
|
[19] |
孙真, 陈涵肖, 付尚礼, 等. 生态浮岛处理微污染水体综述[J]. 环境工程, 2018, 36(12):10-15.
|
[20] |
张莹琦, 贺菊花, 程刚. 生态浮岛技术用于河湖污染修复进展研究[J]. 环境科学与管理, 2015(6):138-142.
|
[21] |
陈乐, 朱静. 泽泻科泽泻属和慈姑属的研究[J]. 哈尔滨师范大学自然科学学报, 2010, 26(5):92-93
, 98.
|
[22] |
ASAEDA T, SIONG K. Dynamics of growth, carbon and nutrient translocation in Zizania latifolia[J]. Ecological Engineering, 2008, 32(2):156-165.
|
[23] |
WANG P H, ZHANG H, ZUO J, et al. A hardy plant facilitates nitirogen removal via microbial communities in subsurface flow constructed wetlands in winter[J]. Scientific Reports, 2016, 9:1-13.
|
[24] |
LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater[J]. 2016, 94(9):546-573.
|
[25] |
陈毓华, 汪俊三. 华南地区11种高等水生维管植物净化城镇污水效益评价[J]. 农村生态环境, 1995(1):26-29.
|
[26] |
国家环境保护总局. 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
|
[27] |
周振兴, 黄田, 张劲, 等. 浮床栽培茭白的生物学特征及水质净化作用研究[J]. 四川环境, 2007(5):1-4.
|
[28] |
杨可昀, 宋海亮, 黄诗蓓, 等. 根系分泌物调控对人工湿地去除雌激素的影响[J]. 环境科学研究, 2016, 29(1):59-66.
|