Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Ru-jie, WANG Fu-mei, BAI Peng-fei, CHEN Xiao-gen, WANG Zhi, SHEN Bo-xiong, WU Chun-fei. NH3-SCR PERFORMANCE OF LOW VANADIUM-BASED CATALYST PREPARED BY BALL MILLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 103-110. doi: 10.13205/j.hjgc.202103015
Citation: ZHANG Ru-jie, WANG Fu-mei, BAI Peng-fei, CHEN Xiao-gen, WANG Zhi, SHEN Bo-xiong, WU Chun-fei. NH3-SCR PERFORMANCE OF LOW VANADIUM-BASED CATALYST PREPARED BY BALL MILLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 103-110. doi: 10.13205/j.hjgc.202103015

NH3-SCR PERFORMANCE OF LOW VANADIUM-BASED CATALYST PREPARED BY BALL MILLING

doi: 10.13205/j.hjgc.202103015
  • Received Date: 2020-02-27
    Available Online: 2021-07-19
  • The modified sample SAPO-Ti was prepared by ball-milling method with Cu/SAPO-34 catalyst and VW/TiO2 catalyst with a mass ratio of 1:1. The performance and sulfur resistance of mixed catalyst in NH3-SCR process was studied by a fixed bed test bench. The physical and chemical properties of the catalysts were characterized by X-ray diffraction analysis (XRD), N2 adsorption-desorption (BET), scanning electron microscope (SEM), hydrogen temperature programmed reduction (H2-TPR), NH3-TPD and in-situ DRIFT. The results showed that the ball-milled mixed sample SAPO-Ti remained the crystal structure of the two catalysts with high acid content and moderate-temperature activity. Surface morphology showed that the VW/TiO2 catalyst covered on the surface of the Cu/SAPO-34 catalyst and protected Cu/SAPO-34 catalyst framework; the sulfur poisoning was observed by in-situ DRIFT, and the results showed that sulfur poisoning deactivation of Cu/SAPO-34 mainly formed sulfate species on the active site of Cu, which reduced the active sites and then desulfurixation efficiency. However, the accumulation of sulfur-contained species formed on the surface of SAPO-Ti catalyst obviously was reduced and the sulfur resistance was improved, because VW/TiO2 in the outer surface with high sulfur resistance protected the internal Cu2+ active sites to maintain the high efficiency of medium temperature demitration and kept Cu/SAPO-34 catalyst from poisoning.
  • loading
  • [1]
    WANG J H, ZHAO H W, HALLER G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B:Environmental, 2017, 202:346-354.
    [2]
    FICKEL D W, D'ADDIO E, LAUTERBAC J A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B:Environmental, 2011, 102:441-448.
    [3]
    ALBERT K B, FAN C, PANG L, et al. The influence of chemical poisoning, hydrothermal aging and their co-effects on Cu-SAPO-34 catalyst for NOx reduction by NH3-SCR[J]. Applied Surface Science, 2019, 479:1200-1211.
    [4]
    NIU C, SHI X Y, LIU F D, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chemical Engineering Journal, 2016, 294:254-263.
    [5]
    CHENG Y S, LAMBERT C, KIM D H, et al. The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts[J]. Catalysis Today, 2010, 151:266-270.
    [6]
    王晨. Cu/SAPO-34催化剂硫中毒及再生研究[D]. 天津:天津大学, 2017.
    [7]
    SHEN M Q, WEN H Y, HAO T, et al. Deactivation mechanism of SO2 on Cu/SAPO-34 NH3-SCR catalysts:structure and active Cu2+[J]. Catalysis Science & Technology, 2015, 5:1741-1749.
    [8]
    ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B:Environmental, 2014, 156/157:371-377.
    [9]
    周惠,黄华存,董文华, 等. V2O5-WO3/TiO2脱硝催化剂的制备及抗硫性能[J]. 现代化工, 2017, 37(9):114-118.
    [10]
    YANG N, YU J L, DOU J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152:102-107.
    [11]
    ZHAO K, HAN W L, TANG Z C, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 503:53-60.
    [12]
    HAMOUD H I,VALTCHEV V, DATURI M. Selective catalytic reduction of NOx over Cu-and Fe-exchanged zeolites and their mechanical mixture[J]. Applied Catalysis B:Environmental, 2019, 250:419-428.
    [13]
    SALAZAR M, BECKER R, GRUNERT W. Hybrid catalysts-an innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2015, 165:316-327.
    [14]
    ZHAN W C, YANG S Z, ZHANG P F, et al. Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry[J]. Chemistry of Materials, 2017, 17:7323-7329.
    [15]
    LI R, WANG P Q, MA S B, et al. Excellent selective catalytic reduction of NOx by NH3 over Cu/SAPO-34 with hierarchical pore structure[J]. Chemical Engineering Journal, 2020, 379:122376.
    [16]
    李泽英. 钒钛系SCR脱硝催化剂制备和催化剂失活及再生试验研究[D]. 重庆:重庆大学,2016.
    [17]
    XUE J J, WANG X Q, QI G S, et al. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia:relationships between active Cu sites and de-NOx performance at low temperature[J]. Journal of Catalysis, 2013, 297:56-64.
    [18]
    WANG C Z, YANG S J, CHANG H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2:acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225:520-527.
    [19]
    PUTLURY S S R, SCHILL L, GODIKSEN A, et al. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2016, 183:282-290.
    [20]
    YU T, XU M H, HUANG Y, et al. Insight of platinum poisoning Cu/SAPO-34 during NH3-SCR and its promotion on catalysts regeneration after hydrothermal treatment[J]. Applied Catalysis B:Environmental, 2017, 204:525-536.
    [21]
    XU M H, WANG J, YU T, et al. New insight into Cu/SAPO-34 preparation procedure:impact of NH3-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH3-SCR catalysts[J]. Applied Catalysis B:Environmental, 2018, 220:161-170.
    [22]
    ZHANG D, YANG R T. NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst:performance enhancement by doping Fe and MnCe and insight into N2O formation[J]. Applied Catalysis A:General, 2017, 543:247-256.
    [23]
    王洪友,邵逊哲,王丽,等. SiO2改性钒钨钛催化剂的NH3-SCR反应性能[J]. 稀有金属, 2018, 42(1):53-58.
    [24]
    LIU Y M, SHU H, XU Q S, et al. FT-IR study of the SO2 oxidation behavior in the selective catalytic reduction of NO with NH3 over commercial catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43:1018-1024.
    [25]
    王静, 沈伯雄, 刘亭, 等. 钒钛基SCR催化剂中毒及再生研究进展[J]. 环境科学与技术, 2010, 30(9):97-101

    ,196.
    [26]
    罗肖. V2O5-WO3/TiO2催化剂快速脱除NO<i>x活性及抗SO2的实验研究[D]. 北京:华北电力大学,2016.
    [27]
    郝腾. SO2对Cu/SAPO-34催化剂NH3-SCR性能的影响[D]. 天津:天津大学, 2014.
    [28]
    李博. 针对金属氧化物型催化剂和Cu/SAPO-34分子筛NH3-SCR反应机制的相关探究[D]. 南京:南京理工大学, 2018.
    [29]
    CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2010, 44:9590-9596.
    [30]
    XU Y F, WU X D, GAO L, et al. Crystal orientation-dependent activity of tungsten-based catalysts for selective catalytic reduction of NO with NH3[J]. Journal of Catalysis, 2019, 375:294-303.
    [31]
    石琳. NH3和NOx在Cu/SAPO-34分子筛催化剂表面的吸附特性及在SCR反应过程中作用的研究[D]. 天津:天津大学, 2013.
    [32]
    WANG L, LI W, QI G S, et al. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. Journal of Catalysis, 2012, 289:21-29.
    [33]
    KONSTANTIN I H. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews, 2000,42:71-144.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return