Citation: | XIN Wen-cai, CHEN Meng, CHEN Yi-lin, CHEN Shi, FU Wei-liang, ZHANG Cheng-zhen, ZHANG Xu-kun. RESEARCH PROGRESS OF DRYING AND REDUCTION EQUIPMENT FOR HIGH-HUMIDITY AND HIGH-VISCOSITY SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 178-182. doi: 10.13205/j.hjgc.202103025 |
[1] |
覃思宇,王丹丹.关于我国城镇污水处理厂污泥处理处置的现状分析[J].化工管理,2020(15):49-50.
|
[2] |
杨新海.污泥协同焚烧技术发展的探讨与行业思考[J].净水技术,2018,37(11):1-3
, 39.
|
[3] |
张祥成,孟永彪.浅析中国粉煤灰的综合利用现状[J].无机盐工业,2020,52(2):1-5.
|
[4] |
严旦乐.工业固体废弃物与循环经济[J].绿色环保建材,2018(8):30, 32.
|
[5] |
张学飞,邢献军,糜梦星,等.厨余垃圾及其水热炭燃烧特性与动力学研究[J].太阳能学报,2020,41(6):128-135.
|
[6] |
杨刚. 高湿轻质废渣的烘干处理及工艺设备特点分析[R]. 建筑材料工业技术情报研究所,2010:49-52.
|
[7] |
闫业成,井传明,宋占龙,等.热风和微波干燥对煤泥品质的影响[J].化工进展,2019,38(增刊1):122-127.
|
[8] |
马学文. 城市污泥干燥特性及工艺研究[D].杭州:浙江大学,2008.
|
[9] |
罗丹,李紫龙,杜秋,等.赤泥综合利用研究进展[J].科技创新与应用,2020(15):75-76.
|
[10] |
字春光,苏友波,包立,等.我国磷石膏资源化利用现状及对策建议[J].安徽农业科学, 2018, 46(5):73-76
, 80.
|
[11] |
张琪,华慧敏.玉米淀粉渣开发利用及研究进展[J].发酵科技通讯, 2014, 43(1):36-38
, 46.
|
[12] |
江思瑶,宋昊,陈晨,等.白酒酒糟中有机酸的分离提取及香气成分分析[J].食品工业科技,2019,40(17):206-211.
|
[13] |
苑东东. 高粘高湿物料干燥机的结构设计与强度分析[D].石家庄:河北科技大学,2016.
|
[14] |
王伟云. 污泥间接薄层干燥与热压力耦合脱水干燥研究[D].大连:大连理工大学,2012.
|
[15] |
赵勇. 高效粘稠物料烘干机研究与开发[D].武汉:武汉理工大学,2014.
|
[16] |
任景春,刘东玲,李延国,等.直通热风顺流式双轴搅拌干燥机的研究[J].农机化研究,2010,32(7):124-126
, 134.
|
[17] |
李宁,孙德松,于镇宇.旋转闪蒸干燥机的改进[J].食品与机械,2012,28(4):143-145
, 148.
|
[18] |
裴中阳,梁毅.国外行星式混合机的最新动态观察与探讨[J].机电信息,2011(26):50-52.
|
[19] |
ARASH IRANSHAHIA,CHRISTOPHE Devalsa,MOURAD Heniche,et al. Hydrodynamics characterization of the Maxblend impeller[J].Chemical Engineering Science,2007,(62):3641-3653.
|
[20] |
GUNTZBURGER Y, FONTAINE, ANDRÉ, FRADETTE L, et al. An experimental method to evaluate global pumping in a mixing system:application to the Maxblend for Newtonian and non-Newtonian fluids[J]. Chemical Engineering Journal, 2013, 214(Complete):394-406.
|
[21] |
FRADETTE L, THOMÉ G, TANGUY P A, et al. Power and Mixing Time Study Involving a Maxblend Impeller with Viscous Newtonian and Non-Newtonian Fluids[J]. Chemical Engineering Research & Design, 2007, 85(11):1514-1523.
|
[22] |
YAO W, MISHIMA M, TAKAHASHI K. Numerical Investigation on Dispersive Mixing Characteristics of MAX-BLEND and Double Helical Ribbon[J]. Chemical Engineering Journal, 2001, 84(3):565-571.
|
[23] |
倪春林. 适合高湿高粘物料的干燥设备的研究与开发[D].天津:天津大学,2008.
|
[24] |
王敬哲. 气流-喷动床气固两相流动与干燥特性研究[D].大连:大连理工大学,2017.
|
[25] |
ARRUDA E B, FACANHA J M F, PIRES L N, et al. Conventional and modified rotary dryer:comparison of performance in fertilizer drying[J]. Chemical Engineering and Processing, 2009, 48(9):1414-1418.
|
[26] |
张小卫. 褐煤流化床干燥器布风板的数值模拟与结构优化[D].东营:中国矿业大学,2015.
|
[27] |
王立,黄晓华,陈国三,等.新型黏性物料烘干机控制系统的设计[J].机械与电子,2015(12):10-13.
|
[28] |
李宇. 双层振动流化床的设计与特性分析[D].武汉:武汉轻工大学,2019.
|
[29] |
曾恩. 污泥防粘附与两级节能干燥系统研究[D].南昌:南昌航空大学,2018.
|
[30] |
LANGRISH T A. Multi-scale mathematical modelling of spray dryers[J]. Journal of Food Engineering, 2009, 93(2):218-228.
|
[31] |
WANNAPAKHE S, CHAIWONG T, DANDEE M, et al. Hot air dryer with closed-loop oscillating heat pipe with check valves for reducing energy in drying process[J]. Procedia Engineering,2012,32:77-82.
|
[32] |
TAPANI JOKINIEMI,MIKKO HAUTALA,TIMO OKSANEN,et al. Parallel plate heat exchanger for heat energy recovery in a farm grain dryer[J]. Drying Technology,2016,34(5):547-556.
|
[33] |
方静雨. 污泥干燥机理试验研究[D].杭州:浙江大学,2011.
|
[34] |
薛玲丽. 污泥脱水及干燥研究[D].杭州:浙江大学,2012.
|
[35] |
张绪坤,王高敏,温祥东,等.基于图像处理的过热蒸汽与热风干燥污泥收缩特性分析[J].农业工程学报,2016,32(19):241-248.
|
[36] |
李潇. 苹果丁压差闪蒸联合干燥机理及质构形成影响机制研究[D].沈阳:沈阳农业大学,2020.
|
[37] |
陈少卿. 污泥在桨叶干燥机内干燥的模拟和试验研究[D].杭州:浙江大学,2018.
|
[38] |
周国顺. 褐煤的热干燥机理及实验研究[D].杭州:浙江大学,2017.
|
[39] |
ORIKASA T, WU L, SHIINA T, et al. Drying characteristics of kiwifruit during hot air drying[J]. Journal of Food Engineering, 2008, 85(2):303-308.
|
[40] |
OMOLOLA A O, JIDEANI A I O, KAPILA P F. Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(6):107-113.
|
[41] |
OJEDIRAN J O, OKONKWO C E, ADEYI A, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer:application of ANFIS in the prediction of drying kinetics[J]. Heliyon, 2020, 6(3):e03555.
|
[42] |
GHANBARIAN D, DASTJERDI M B, Torkiharchegani M, et al. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying[J]. Heat and Mass Transfer, 2016, 52(5):1081-1088.
|
[43] |
RENSBURG M J VAN,ROUX LE,Campbell, et al. Moisture transport during contact sorption drying of coal fines[J]. International Journal of Coal Preparation and Utilization,2020,40(4/5):281-296.
|
[44] |
ALEXANDROS I, STEFANAKIS,VASSILIOS A,et al. Dewatering mechanisms in pilot-scale Sludge Drying Reed Beds:effect of design and operational parameters[J]. Chemical Engineering Journal, 2011, 172(1):430-44.
|