Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012
Citation: ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012

SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG

doi: 10.13205/j.hjgc.202104012
  • Received Date: 2020-05-27
    Available Online: 2021-07-21
  • With the acceleration of industrialization and urbanization, China's frequent occurrence of haze weather has seriously affected People's daily life and health. As an important part of haze, PM2.5 has become a hot issue. The type of land use can significantly affect the pollution concentration of PM2.5, and the study of the relationship between the type of land use and PM2.5 pollution is of great significance for air pollution control. At present, most of the existing researches are based on regression model to analyze the fixed influence of land use type on PM2.5 on an annual scale. However, the relationship between land use type and PM2.5 is complex, and the influence intensity is not the same in different seasons. Based on this, the contribution rate of land use type to PM2.5 concentration in different seasons was quantitatively discussed by using the method of boosted regression tree. The results showed that the land use type had significant difference in the influence of PM2.5 concentration in different seasons, and the dominant factors in spring, summer, autumn and winter were branch road (27.37%), secondary trunk road (19.17%), vegetation coverage (37.23%) and construction land (86.37%). In addition, according to the influence curve of different land use types on PM2.5 in different seasons, specific and quantitative planning indicators of optimizing the layout of greening construction and strengthening traffic control were provided for the control of PM2.5 pollution in Weifang.
  • loading
  • [1]
    ZOU B, PU Q, BILAL M, et al. High-resolution satellite mapping of fine particulates based on geographically weighted regression[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(4):495-499.
    [2]
    POPE III C A, BURNETT R T, THUN M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA, 2002,287(9):1132-1141.
    [3]
    张润森, 濮励杰, 刘振. 土地利用/覆被变化的大气环境效应研究进展[J]. 地域研究与开发, 2013,32(4):123-128.
    [4]
    阳海鸥, 陈文波, 梁照凤. LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J]. 农业工程学报, 2017,33(6):232-239.
    [5]
    焦利民, 许刚, 赵素丽, 等. 基于LUR的武汉市PM2.5浓度空间分布模拟[J]. 武汉大学学报(信息科学版), 2015,40(8):1088-1094.
    [6]
    刘炳杰, 彭晓敏, 李继红. 基于LUR模型的中国PM2.5时空变化分析[J]. 环境科学, 2018,39(12):5296-5307.
    [7]
    许刚, 焦利民, 肖丰涛, 等. 土地利用回归模型模拟京津冀PM2.5浓度空间分布[J]. 干旱区资源与环境, 2016,30(10):116-120.
    [8]
    李爽, 翟亮, 桑会勇, 等. 基于改进LUR模型的大区域PM2.5浓度空间分布模拟[J]. 武汉大学学报(信息科学版), 2018,43(10):1574-1579.
    [9]
    赵佳楠, 徐建华, 卢德彬, 等. 基于RF-LUR模型的PM2.5空间分布模拟:以长江三角洲地区为例[J]. 地理与地理信息科学, 2018,34(1):18-23.
    [10]
    生态环境部. 2017年中国生态环境状况公报[R].2018.
    [11]
    赵博娟,吴喜之. 非参数统计[M]. 4版. 北京:中国统计出版社, 2013.
    [12]
    ELITH J, LEATHWICK J R, HASTIE T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008,77(4):802-813.
    [13]
    PRASAD A M, IVERSON L R, LIAW A. Newer classification and regression tree techniques:bagging and random forests for ecological prediction[J]. Ecosystems, 2006,9(2):181-199.
    [14]
    MVLLER D L P S T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees[J]. Agricultural Systems, 2013,117:66-77.
    [15]
    蔡文华, 杨健, 刘志华, 等. 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子[J]. 生态学报, 2012,32(11):3303-3312.
    [16]
    李春林, 刘淼, 胡远满, 等. 基于增强回归树和Logistic回归的城市扩展驱动力分析[J]. 生态学报, 2014,34(3):727-737.
    [17]
    王迪, 王明新, 钱中平, 等. 基于增强回归树的农田总氮流失强度省际差异及其影响因素分析[J]. 生态与农村环境学报, 2017,33(12):1057-1063.
    [18]
    焦琳琳, 常禹, 申丹, 等. 利用增强回归树分析中国野火空间分布格局的影响因素[J]. 生态学杂志, 2015,34(8):2288-2296.
    [19]
    肖玉, 王硕, 李娜, 等. 北京城市绿地对大气PM2.5的削减作用[J]. 资源科学, 2015,37(6):1149-1155.
    [20]
    代希腾, 弋紫阁, 姚广鹏. 旅游城市交通客流预测季节气候敏感性分析[J]. 交通与运输(学术版), 2015(增刊1):148-151.
    [21]
    万伟华. 土地利用变化对PM2.5浓度的影响及空间效应研究[D]. 杭州:浙江大学, 2019.
    [22]
    吴健生, 马洪坤, 彭建. 基于"功能节点-关键廊道"的城市生态安全格局构建:以深圳市为例[J]. 地理科学进展, 2018,37(12):1663-1671.
    [23]
    葛跃, 王明新, 孙向武, 等. 基于增强回归树的城市PM2.5日均值变化分析:以常州为例[J]. 环境科学, 2017,38(2):485-494.
    [24]
    HOEK G, BEELEN R, DE HOOGH K, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution[J]. Atmospheric Environment, 2008,42(33):7561-7578.
    [25]
    HENDERSON S B, BECKERMAN B, JERRETT M, et al. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter[J]. Environmental Science & Technology, 2007,41(7):2422-2428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return