Citation: | ZHOU Kuan, HUANGFU Zhuo-xi, ZHONG Cheng-wei, DING Ping, XIE Shi-qian, YU Jiang. BIODEGRADABLE CHELATE GLDA ENHANCED PHYTOEXTRACTION FOR CADMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 165-170,79. doi: 10.13205/j.hjgc.202105023 |
[1] |
李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 2019, 32(12):1993-2000.
|
[2] |
王永奎, 陈苗, 张家泉, 等. 螯合剂辅助植物修复重金属污染土壤技术研究进展[J]. 湖北理工学院学报, 2014, 30(4):30-32
,40.
|
[3] |
吴青, 崔延瑞, 汤晓晓, 等. 生物可降解螯合剂谷氨酸N, N-二乙酸四钠对污泥中重金属萃取效率的研究[J]. 环境科学, 2015, 36(5):1733-1738.
|
[4] |
陈叶享. 更绿色和持续性螯合剂GLDA及其应用之道[J]. 中国洗涤用品工业, 2011(3):65-67.
|
[5] |
刘艺芸, 崔爽, 张倩茹, 等. 可降解氨基羧酸型螯合剂在重金属污染土壤修复中的应用研究进展[J]. 山东农业科学, 2015, 47(5):136-140.
|
[6] |
GUO X F, ZHANG G X, WEI Z B, et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils[J]. Journal of Soils and Sediments, 2017,18(2):835-844.
|
[7] |
袁江, 李晔, 许剑臣, 等. 可生物降解螯合剂GLDA和植物激素共同诱导植物修复重金属污染土壤研究[J]. 武汉理工大学学报, 2016, 38(2):82-86
,92.
|
[8] |
贺玉龙, 余江, 谢世前, 等. 可生物降解螯合剂GLDA强化三叶草修复镉污染土壤[J]. 环境科学, 2020, 41(2):979-985.
|
[9] |
卫泽斌, 陈晓红, 吴启堂, 等. 可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究[J]. 环境科学, 2015, 36(5):1864-1869.
|
[10] |
王碧霞. NaCl和Cr3+胁迫对葎草幼苗的生长及抗氧化酶活性的影响[J]. 天津农业科学, 2017, 23(9):1-6
,15.
|
[11] |
魏俊杰, 张妍, 曹柳青, 等. 冀中某铜矿废弃地土壤及优势植物重金属特征评价[J]. 矿产保护与利用, 2017(1):90-97.
|
[12] |
王大勇, 吴效中, 张滋芳, 等. 汾河临汾段主要污染源周边土壤重金属来源及抗性植物调查[J]. 山西农业科学, 2015, 43(10):1290-1296.
|
[13] |
鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000, 175-192.
|
[14] |
赵朔. 土壤重金属元素分析方法研究[D]. 长春:吉林大学, 2014.
|
[15] |
ROBINSON B H, MILLS T M, PETIT D, et al. Natural and induced cadmium-accumulation in poplar and willow:implications for phytoremediation[J]. Plant and Soil, 2000, 227(1/2):301-306.
|
[16] |
廖爽. 螯合剂EDDS与生长调节剂对牛膝菊(Galinsoga parviflora)富集镉的影响[D]. 雅安:四川农业大学, 2016.
|
[17] |
罗艳, 张世熔, 徐小逊, 等. 可降解螯合剂对镉胁迫下籽粒苋根系形态及生理生化特征的影响[J]. 生态学报, 2014, 34(20):5774-5781.
|
[18] |
王思予, 多立安, 赵树兰. 可降解螯合剂对草坪植物高羊茅发育及生理的影响[J]. 园艺学报, 2017, 44(11):2186-2194.
|
[19] |
陈立, 王丹, 龙婵, 等. 三种螯合剂对芥菜修复铀镉复合污染土壤的影响[J]. 农业环境科学学报, 2018, 37(8):1690-1697.
|
[20] |
刘金, 殷宪强, 孙慧敏, 等. EDDS与EDTA强化苎麻修复镉铅污染土壤[J]. 农业环境科学学报, 2015, 34(7):1293-1300.
|
[21] |
李妍. 铅镉胁迫对小麦幼苗抗氧化酶活性及丙二醛含量的影响[J]. 麦类作物学报, 2009, 29(3):514-517.
|
[22] |
XU W H, LI W Y, HE J P, et al. Effects of insoluble Zn, Cd, and EDTA on the growth. activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides[J]. Journal of Environmental Sciences, 2009, 21(2):186-192.
|
[23] |
郑爱珍. 镉胁迫对芥蓝根系质膜过氧化及ATPase活性的影响[J]. 生态学报, 2012, 32(2):483-488.
|
[24] |
于方明, 漆培艺, 刘可慧, 等. 锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响[J]. 农业环境科学学报, 2019, 38(8):1882-1890.
|
[25] |
杨文玲, 巩涛, 刘莹莹, 等. 铅铬胁迫对小麦幼苗抗氧化酶活性和丙二醛含量的影响[J]. 中国农学通报, 2015, 31(6):45-50.
|
[26] |
ZHANG F Q, WANG Y S, LOU Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007, 67(1):44-50.
|
[27] |
高玉梅, 刘帅霞. 植物修复铬污染土壤的研究进展[J]. 广东化工, 2014, 41(5):88-89.
|
[28] |
杨丹丹, 杨丽雯, 张永清, 等. 2,6-二甲基-β-环糊精螯合强化葎草对Pb吸收的影响和机理[J]. 环境科学学报, 2016,36(9):3346-3353.
|
[29] |
祁由菊, 崔德杰. EDTA辅助下地被石竹对铅污染土壤的修复潜力[J]. 农业环境科学学报, 2008,27(1):165-169.
|
[30] |
韩少华, 唐浩, 黄沈发. 重金属污染土壤螯合诱导植物修复研究进展[J]. 环境科学与技术, 2011, 34(增刊1):157-163.
|
[31] |
ALAN J M BAKER. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS[J]. Chinese Journal of Geochemistry, 2006, 63(S1):1773-1784.
|
[32] |
SHAHID M, DUMAT C, KHALID S, et al. Reviews of Environmental Contamination and Toxicology, Volume 241[M]. Springer, 2016:73-137.
|