Citation: | WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025 |
[1] |
FAN Q Y, SUN J X, QUAN G X, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil:implications for the vertical co-migration of heavy metals[J]. Environment International, 2020, 136(5):105439.
|
[2] |
ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242(5):118435.
|
[3] |
ZEESHAN M, AHMAD W, HUSSAIN F, et al. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield[J]. Journal of Cleaner Production, 2020, 255(10):120318.
|
[4] |
GAO J, ZHAO T K, TSANG D C W, et al. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce[J]. Science of the Total Environment, 2020, 714(3):136721.
|
[5] |
ZHAO M, DAI Y, ZHANG M Y, et al. Mechanisms of Pb and/or Zn adsorption by different biochars:biochar characteristics, stability, and binding energies[J]. Science of the Total Environment, 2020, 717(8):136894.
|
[6] |
XUE C, ZHU L, LEI S C, et al. Lead competition alters the zinc adsorption mechanism on animal-derived biochar[J]. Science of the Total Environment, 2020, 713(5):136395.
|
[7] |
CHENG C, HAN H, WANG Y P, et al. Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil[J]. Science of the Total Environment, 2020, 740(5):139972.
|
[8] |
汤传武, 刘立恒, 黄蓉, 等. 制备工艺对nZVI/污泥基生物炭中Zn、Cu、Pb形态分布及其生态风险的影响[J]. 环境工程, 2020, 38(10):216-221.
|
[9] |
许思涵, 王敏艳, 张进, 等. 热解时间对污泥炭特性及其重金属生态风险水平的影响[J]. 环境工程, 2020, 38(3):162-167.
|
[10] |
YANG Y Q, CUI M H, REN Y G, et al. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 38(8):1-8.
|
[11] |
戴亮, 赵伟繁, 张洪伟, 等. 污泥生物炭对水中重金属去除的研究进展[J]. 环境工程, 2020,38(12):70-77.
|
[12] |
陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.
|
[13] |
MVLLER-STÖVER D, THOMPSON R, LU C, et al. Increasing plant phosphorus availability in thermally treated sewage sludge by post-process oxidation and particle size management[J]. Waste Management, 2021, 120(10):716-724.
|
[14] |
WANG Z P, SHU X Q, ZHU H N, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments[J]. Environmental Technology, 2020, 41(11):1347-1357.
|
[15] |
TOMCZYK B, SIATECKA A, GAO Y Z, et al. The convertion of sewage sludge to biochar as a sustainable tool of PAHs exposure reduction during agricultural utilization of sewage sludges[J]. Journal of Hazardous Materials, 2020, 392(5):122416.
|
[16] |
LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257(2):120562.
|
[17] |
李喜林, 仝重凯, 刘玲, 等. 粉煤灰合成沸石对铬污染土壤中Cr(Ⅲ)的吸附稳定化效果及机制研究[J]. 安全与环境学报, 2021,21(1):156-168.
|
[18] |
湛润生, 冯丽肖, 刘海萍, 等. 施硫磺对Pb、Cd、Cr复合污染土壤基本性质与重金属有效性的影响[J]. 山西大同大学学报(自然科学版), 2020, 36(6):82-87.
|
[19] |
王宇霞, 郝秀珍, 苏玉红, 等不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究[J]. 土壤, 2016, 48(1):123-130.
|
[20] |
武梦娟, 王桂君, 许振文, 等. 生物炭对沙化土壤理化性质及绿豆幼苗生长的影响[J]. 生物学杂志, 2017, 34(2):63-67.
|
[21] |
YUE Y, CUI L, LIN Q M, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth[J]. Chemosphere, 2017, 173(5):551-556.
|
[22] |
JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229/230:145-150.
|
[23] |
GWENZI W, MUZAVA M, MAPANDA F, et al. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe[J]. Journal of Integrative Agriculture, 2016, 15(6):1395-1406.
|
[24] |
陈小琴, 康欧, 周健民, 等. 水分与有机酸对水稻土肥际微域磷迁移转化的影响[J]. 土壤, 2013, 45(5):838-844.
|
[25] |
HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22):10346-10351.
|
[26] |
YUE C, WANG Q H, LI Y, et al. Assessment of heavy metal contaminated soils from the lead-zinc mine by toxicity characteristic leaching procedure[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1):109-115.
|
[27] |
陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1):1-11.
|
[28] |
KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:a review[J]. Waste Management, 2008, 28(1):215-225.
|
[29] |
FENDORF S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67(1):55-71.
|