Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 6
Jan.  2022
Turn off MathJax
Article Contents
LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016
Citation: LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016

A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS

doi: 10.13205/j.hjgc.202106016
  • Received Date: 2020-07-22
    Available Online: 2022-01-18
  • In urban air quality forecast, the mass concentrations of PM2.5 were influenced by the meteorological conditions and time period. This article selected Beijing as the experimental area, analysing a variety of pollutants concentration characteristics, time characteristics and weather characteristics. The data by hour of 33 air quality monitoring stations in 2019 were used to carry out the PM2.5 forecast experiments, based on characteristics of LightGBM(light gradient boosting machine) PM2.5 mass concentration prediction model. The results showed that compared with random forests model(RF), gradient boosting decision tree model(GBDT), XGBoost model, LightGBM model had the highest prediction accuracy of PM2.5 concentration, XGBoost model came next, random forest model was the lowest. The accuracy of LightGBM model PM2.5 prediction was higher than other models, R2 was 0.9614, and training LightGBM model was fast and RAM needed less. LightGBM model on the five indicators were better than the rest of the model, and LightGBM model on PM2.5 hourly prediction had better stability and application prospects.
  • loading
  • [1]
    薛骅骎.大气颗粒物的化学组成、来源识别和污染评价研究[D].合肥:中国科学技术大学,2019.
    [2]
    林承勇.人工神经网络在预测PM2.5浓度中的研究[D].成都:电子科技大学,2016.
    [3]
    冯科展,解建军,张玫,等.灰色模型在PM2.5预测中的应用[J].绵阳师范学院学报,2015,34(5):75-79.
    [4]
    陈志文,刘立.基于BP神经网络的PM2.5预测[J].电子技术与软件工程,2019(5):143-144.
    [5]
    曲悦,钱旭,宋洪庆,等.基于机器学习的北京市PM2.5浓度预测模型及模拟分析[J].工程科学学报,2019,41(3):401-407.
    [6]
    康俊锋,黄烈星,张春艳,等.多机器学习模型下逐小时PM2.5预测及对比分析[J].中国环境科学,2020,40(5):1895-1905.
    [7]
    LIU X L,TAN W A,TANG S,et al.A Bagging-GBDT ensemble learning model for city air pollutant concentration prediction[C]//4th International Conference on Advances in Energy Resources and Environment Engineering,2019.
    [8]
    任才溶,谢刚.基于随机森林和气象参数的PM2.5浓度等级预测[J].计算机工程与应用,2019,55(2):213-220.
    [9]
    夏润,张晓龙.基于改进集成学习算法的在线空气质量预测[J].武汉科技大学学报,2019,42(1):61-67.
    [10]
    王亚男.大数据背景下PM2.5浓度预测的研究[D].曲阜:曲阜师范大学,2019.
    [11]
    刘杰,杨鹏,吕文生,等.基于气象因素的PM2.5质量浓度预测模型[J].山东大学学报(工学版),2015,45(6):76-83.
    [12]
    ZHANG Y,ZHANG R R,MA Q F,et al.A feature selection and multi-model fusion-based approach of predicting air quality[J].ISA Transactions,2020,100:210-220.
    [13]
    WONG K I,WONG P K,CHEUNG C S,et al.Modeling and optimization of biodiesel engine performance using advanced machine learning methods[J].Energy,2013,55:519-528.
    [14]
    HUANG W,CHENG X.Multiple Regression Method for Estimating Concentration of PM2.5 using Remote Sensing and Meteorological Data[J].Journal of Environmental Protection and Ecology,2017,18(2):417-424.
    [15]
    沙靖岚.基于LightGBM与XGBoost算法的P2P网络借贷违约预测模型的比较研究[D].大连:东北财经大学,2017.
    [16]
    马晓君,沙靖岚,牛雪琪.基于LightGBM算法的P2P项目信用评级模型的设计及应用[J].数量经济技术经济研究,2018,35(5):144-160.
    [17]
    程杏杏.典型机器学习算法在PM2.5浓度预测研究中的实现与比较[D].南昌:江西财经大学,2020.
    [18]
    赵文怡,夏丽莎,高广阔,等.基于加权KNN-BP神经网络的PM2.5浓度预测模型研究[J].环境工程技术学报,2019,9(1):14-18.
    [19]
    张纯曦,阿丽亚·拜都热拉,刘丽,等.乌鲁木齐市PM2.5分布特征及其预测模型研究[J].石河子大学学报(自然科学版),2020,38(5):648-654.
    [20]
    付倩娆.基于多元线性回归的雾霾预测方法研究[J].计算机科学,2016,43(增刊1):526-528.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return