Citation: | CHU Si-qin, MA Jia-ying, XU Yu-lu, ZHANG Liang-mao, SU Ying-long, XIE Bing. RESEARCH PROCESS ON APPLICATION OF ZERO VALENT IRON IN ANAEROBIC DIGESTION OF ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 141-149. doi: 10.13205/j.hjgc.202108020 |
[1] |
张腾.厌氧消化技术在有机固体废弃物处理中的应用[J].四川化工,2019,22(5):37-40
,54.
|
[2] |
WAINAINA S,AWASTHI M K,SARSAIYA S,et al.Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies[J].Bioresource Technology,2020,301:122778.
|
[3] |
戴前进,方先金,黄鸥,等.有机废物处理处置技术与产气利用前景[J].中国沼气,2008,26(6):17-19
,32.
|
[4] |
石祖梁.中国秸秆资源化利用现状及对策建议[J].世界环境,2018(5):16-18.
|
[5] |
WANG G J,LI Q,GAO X,et al.Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:performance and associated mechanisms[J].Bioresource Technology,2018,250:812-820.
|
[6] |
WANG X,DUAN X,CHEN J G,et al.Enhancing anaerobic digestion of waste activated sludge by pretreatment:effect of volatile to total solids[J].Environ Technology,2016.
|
[7] |
MA J Y,WEI H W,SU Y L,et al.Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating:microbial and metabolic insights[J].Bioresource Technology,2020,313:123706.
|
[8] |
GU J,LIU R,CHENG Y,et al.Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions:focusing on synergistic effects on methane production[J].Bioresource Technology,2020,301:122765.
|
[9] |
XIAO B Y,TANG X Y,YI H,et al.Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J].Bioresource Technology,2020,304:122979.
|
[10] |
李瑜,侯凤兰,王璇,等.添加剂及抑制剂对餐厨垃圾厌氧消化性能的影响[J].环境卫生工程,2019,27(5):18-21.
|
[11] |
XIAO X,SHENG G P,MU Y,et al.A modeling approach to describe ZVI-based anaerobic system[J].Water Research,2013,47(16):6007-6013.
|
[12] |
BILARDI S,CALABRO P S,GRECO R,et al.Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon[J].Environmental Technology,2020,41(1/2/3/4):498-510.
|
[13] |
KONG X,WEI Y H,XU S,et al.Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates[J].Bioresource Technology,2016,211:65-71.
|
[14] |
魏桃员,温海东,成家杨.零价铁驯化污泥对餐厨垃圾厌氧消化产甲烷的影响[J].湖北农业科学,2016,55(14):3618-3621.
|
[15] |
YANG Y,GUO J L,HU Z Q.Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion[J].Water Research,2013,47(17):6790-6800.
|
[16] |
任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,2003,24(1):70-74.
|
[17] |
YANG Y,WANG J Y,ZHOU Y B.Enhanced anaerobic digestion of swine manure by the addition of Zero-Valent iron[J].Energ Fuel,2019,33(12):12441-12449.
|
[18] |
CHENG J H,ZHU C,ZHU J,et al.Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge[J].Journal of Cleaner Production,2019,242:118195.
|
[19] |
何冬伟,牛冬杰,赵由才.铁刨花对餐厨垃圾厌氧发酵产酸的影响研究[J].能源与节能,2014(1):94-96,101.
|
[20] |
FENG Y H,ZHANG Y B,QUAN X,et al.Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J].Water Research,2014,52:242-250.
|
[21] |
HUANG C,LIU C C,SUN X Y,et al.Hydrolysis and acidification of waste activated sludge enhanced by zero valent iron-acid pretreatment:effect of pH[J].Desalin Water Treat,2015,57:1-9.
|
[22] |
ZHANG Y B,FENG Y H,QUAN X.Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment[J].Waste Management,2015,38:297-302.
|
[23] |
JIA T T,WANG Z Z,SHAN H Q,et al.Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J].Resources,Conservation and Recycling,2017,127:190-195.
|
[24] |
CAO J S,ZHANG Q,WU S,et al.Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation[J].Science of the Total Environment,2019,669:540-546.
|
[25] |
HORIUCHI J I,SHIMIZU T,TADA K,et al.Selective production of organic acids in anaerobic acid reactor by pH control[J].Bioresource Technology,2002,82(3):209-213.
|
[26] |
LOVLEY,DEREK R.Organic matter mineralization with the reduction of ferric iron:a review[J].Geomicrobiol J.1987,5(3/4):375-399.
|
[27] |
ZHANG Y B,FENG Y H,YU Q L,et al.Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron[J].Bioresource Technology,2014,159:297-304.
|
[28] |
LI S Y,CAO Y,ZHAO Z Q,et al.Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode[J].ACS Sustainable Chemistry & Engineering,2019,7(10):9655-9662.
|
[29] |
WANG Y Y,WANG D L,FANG H Y.Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron[J].RSC Advances,2018,48(8):27181-27190.
|
[30] |
YU B,HUANG X T,ZHANG D L,et al.Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system[J].RSC Advances,2016,29(6):24236-24244.
|
[31] |
SU L H,ZHEN G Y,ZHANG L J,et al.The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion[J].Environmental Science:Processes & Impacts,2015,17(12):2013-2021.
|
[32] |
魏桃员,温海东,成家杨.零价铁对餐厨垃圾厌氧消化产甲烷的影响研究[J].环境污染与防治,2016,38(12):54-58
,64.
|
[33] |
SU L H,SHI X L,GUO G Z,et al.Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI):abatement of odor and improvement of biogas production[J].Journal of Material Cycles and Waste Management,2013,15(4):461-468.
|
[34] |
HE C S,HE P P,YANG H Y,et al.Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge:from macroscopic to microcosmic investigation[J].Water Research,2017,127:32-40.
|
[35] |
LIZAMA A,CARRERA F C,ZEPEDA A,et al.Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage[J].Bioresource Technology,2018,275:352-359.
|
[36] |
ZHAO Z S,ZHANG Y B,LI Y,et al.Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion[J].Water Research,2018,144:126-133.
|
[37] |
ZHEN G Y,LU X Q,LI Y Y,et al.Novel insights into enhanced dewaterability of waste activated sludge by Fe(Ⅱ)-activated persulfate oxidation[J].Bioresource Technology,2012,119:7-14.
|
[38] |
WEI W,CAI Z Q,FU J,et al.Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J].Chem Engineering Journal,2018,351:1159-1165.
|
[39] |
ZHOU J,YOU X G,NIU B W,et al.Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J].Science of the Total Environment,2020,703:135532.
|
[40] |
SUANON F,SUN Q,LI M Y,et al.Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion:impact on methane yield and pharmaceutical and personal care products degradation[J].Journal of Hazardous Materials,2017,321:47-53.
|
[41] |
LIU Y W,WANG Q L,ZHANG Y B,et al.Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate[M].Sci Rep-Uk,2016.
|
[42] |
王攀,杜晓璐,陈锡腾,等.Fe0对污泥接种餐厨垃圾厌氧发酵及抗生素抗性基因的影响[J].环境工程,2019,37(7):178-182.
|
[43] |
WANG P,CHEN X T,LIANG X F,et al.Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste[J].Bioresource Technology,2019,293:122092.
|
[44] |
YANG Y,YANG F,HUANG W W,et al.Enhanced anaerobic digestion of ammonia-rich swine manure by zero-valent iron:with special focus on the enhancement effect on hydrogenotrophic methanogenesis activity[J].Bioresource Technology,2018,270:172-179.
|
[45] |
ABDELSALAM E,SAMER M,ATTIA Y-A,et al.Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure[J].Energy,2017,120:842-853.
|
[46] |
ZHOU X,WANG Q L,JIANG G M,et al.A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate[J].Bioresource Technology,2015,185:416-420.
|
[47] |
HU Y Q,WANG F,LV G J,et al.Enhancing the biogas production of sludge anaerobic digestion by a combination of Zero-Valent iron foil and persulfate[J].Energ Fuel,2019,33(8):7436-7442.
|
[48] |
LI Y,ZHANG Y B,LIU Y W,et al.Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens[J].Bioresource Technology,2016,218:505-511.
|
[49] |
ZHANG G Y,SHI Y H,ZHAO Z S,et al.Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron[J].Bioresource Technology,2020,306:123122.
|
[50] |
马佳莹,汪冰寒,乔子茹,等.碳基材料对餐厨垃圾厌氧消化效率和微生物群落的影响研究进展[J].应用与环境生物学报,2020,26(3):730-738.
|
[51] |
PHENRAT T,SALEH N,SIRK K,et al.Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions,environ[J].Environmental Science & Technology,2007,41:284-290.
|
[52] |
ZHANG M,LI J H,WANG Y C.Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge[J].Environmental Science and Pollution Research International,2019,26(10):10292-10365.
|
[53] |
WANG T Y,QIN Y J,CAO Y,et al.Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge[J].Environmental Science and Pollution Research International,2017,24(28):22371-22381.
|
[54] |
WANG Y Y,YANG A Q,ZHUAN R,et al.Transformations,inhibition and inhibition control methods of sulfur in sludge anaerobic digestion:a review[J].Curr Org Chem,2016,20(26):2780-2789.
|
[55] |
KARRI S,SIERRA-ALVAREZ R,FIELD J.Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge[J].Biotechnol Bioeng,2005,92:810-819.
|
[56] |
LIU Y W,ZHANG Y B,NI B J.Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors[J].Water Research,2015,75:292-300.
|
[57] |
FARGHALI M,ANDRIAMANOHIARISOAMANANA F J,AHMED M M,et al.Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure:the influence of microscale waste iron powder and iron oxide nanoparticles[J].Waste Management,2020,101:141-149.
|
[58] |
许东.废铁屑促进污泥厌氧消化及原位硫化氢控制研究[D].长沙:湖南大学,2018.
|
[59] |
YOO K,YOO H,LEE J,et al.Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis[J].Journal of Microbiology,2020,58(2):123-130.
|
[60] |
BARRIOS R E,KHUNTIA H K,BARTELT-HUNT S L,et al.Fate and transport of antibiotics and antibiotic resistance genes in runoff and soil as affected by the timing of swine manure slurry application[J].Science of the Total Environment,2020,712:136505.
|
[61] |
ZHANG J X,MAO F J,LOH K C,et al.Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes[J].Bioresource Technology,2018,249:729-736.
|
[62] |
WANG P L,WU D,YOU X X,et al.Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills[J].Journal of Hazardous Materials,2021,403:123689.
|
[63] |
SUI Q W,ZHANG J Y,CHEN M X,et al.Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater[J].Environmental Pollution,2016,213:751-759.
|
[64] |
GAO P,GU C C,WEI X,et al.The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste[J].Water Research,2017,111:92-99.
|
[65] |
SONG W,WANG X J,GU J,et al.Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion[J].Bioresource Technology,2017,231:1-8.
|
[66] |
YUAN H Y,MILLER J H,ABU-REESH I M,et al.Effects of electron acceptors on removal of antibiotic resistant
|
[67] |
MA J Y,GU J,WANG X J,et al.Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure[J].Bioresource Technology,2019,289:121688.
|
[68] |
ZHANG J Y,SUI Q W,ZHONG H,et al.Impacts of zero valent iron,natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure[J].Bioresource Technology,2018,258:135-141.
|
[69] |
HU Y S,HAO X D,ZHAO D,et al.Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J].Chemosphere,2015,140:34-39.
|
[70] |
WANG L X,ZHOU Q G,LI F T.Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production[J].Biomass and Bioenergy,2006,30(2):177-182.
|
[71] |
CHANG C N,MA Y S,LO C W.Application of oxidation-reduction potential as a controlling parameter in waste activated sludge hydrolysis[J].Chemical Engineering Journal,2002,90(3):273-281.
|
[72] |
REN N Q,CHUA H,CHAN S Y,et al.Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J].Bioresource Technology,2007,98(9):1774-1780.
|
[73] |
LIU Y W,ZHANG Y B,QUAN X,et al.Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment[J].Chemical Engineering Journal,2012,192:179-185.
|
[74] |
MENG X S,ZHANG Y B,LI Q,et al.Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate[J].Biochem Engineering Journal,2013,73:80-85.
|
[75] |
THANH P-M,KETHEESAN B,YAN Z,et al.Trace metal speciation and bioavailability in anaerobic digestion:a review[J].Biotechnology Advances,2016,34(2):122-136.
|
[76] |
ZHANG J W,GUO L,JU-YING LI,et al.Influences of different initial pH,ORP and shaking rates on anaerobic acidification of excess sludge[J].China Water & Wastewater,2015,11:107-111.
|
[77] |
KONG X,YU S Y,XU S,et al.Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates[J].Waste Management,2018,71:719-727.
|
[78] |
FENG Y H,ZHANG Y B,QUAN X,et al.Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J].Water Research,2014,52:242-250.
|
[79] |
MA W C,XIN H M,ZHONG D,et al.Effects of different states of fe on anaerobic digestion:a review[J].Journal of Harbin Institute of Technology,2015,22(6):69-75.
|
[80] |
HAO X D,WEI J,van LOOSDRECHT Mark-C-M,et al.Analysing the mechanisms of sludge digestion enhanced by iron[J].Water Research,2017,117:58-67.
|
[81] |
PUYOL D,FLORES-ALSINA X,SEGURA Y,et al.Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process[J].Chemical Engineering Journal,2018,335:703-711.
|
[82] |
郝晓地,魏静,曹达啟.废铁屑强化污泥厌氧消化产甲烷可行性分析[J].环境科学学报,2016,36(8):2730-2740.
|