Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017
Citation: LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017

TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS

doi: 10.13205/j.hjgc.202109017
  • Received Date: 2020-10-20
    Available Online: 2022-01-21
  • In this study, three carbon capture scenarios were designed, namely fixed quantity raw gas scenario, fixed carbon capture amount scenario, and mixed raw gas scenario. Cases reflecting different CO2 capture rates and product purity associated with different capture technologies were further designed under each scenario. The impacts of CO2 capture on the economic benefits of calorific value variation of blast furnace gas were analyzed. When the CO2 capture rate and CO2 product purity were equal, the calorific value of CO2 per unit based on the fixed quantity raw gas scenario was higher than that under the fixed carbon capture amount scenario. When the CO2 capture rate was fixed, with the reduction of CO2 product purity, the calorific value benefits of CO2 per unit mass based on the fixed quantity raw gas scenario and the fixed carbon capture amount scenario were both higher. When the purity of CO2 product was fixed, with the reduction of CO2 capture rate, the calorific value of fixed quantity raw gas scenario increased in efficiency, while the calorific value of the fixed carbon capture amount scenario decreased in efficiency.
  • [1]
    ZHAO G,GAO X,WANG Z R,et al.A mechanism model for accurately estimating carbon emissions on a micro scale of iron-making system[J].ISIJ International,2019,59(2):381-390.
    [2]
    ARASTO A,TSUPARI E,KÄRKI J,et al.Costs and potential of carbon capture and storage at an integrated steel mill[J].Energy Procedia,2013,37:7117-7124.
    [3]
    RAMÍREZ S,ÁLVARO A,CASTEL C,et al.Utilization of blast furnace flue gas:opportunities and challenges for polymeric membrane gas separation processes[J].Journal of Membrane Science,2017,526:191-204.
    [4]
    HO M T,BUSTAMANTE A,WILEY D E.Comparison of CO2 capture economics for iron and steel mills[J].International Journal of Greenhouse Gas Control,2013,19:145-159.
    [5]
    郭玉华.高炉煤气净化提质利用技术现状及未来发展趋势[J].钢铁研究学报,2020,32(7):525-531.
    [6]
    卢维强,张俊杰,段国建,等.解决中天钢铁高炉炉壳上涨实践[J].钢铁,2020,55(2):42.
    [7]
    易正明,胡绪满,周正,等.贫煤与煤气混烧锅炉掺烧试验[J].哈尔滨理工大学学报,2020,25(3):102-108.
    [8]
    尹志强.锅炉烟气余热利用系统分析与优化对策[J].冶金管理,2020(7):208-209.
    [9]
    Anne C.CO2 a batement in the iron and steel industry[J].Energy & Fuels,2012,77(1):43.
    [10]
    刘博文,邓帅,李双俊,等.面向碳捕集系统的碳中性评价:研究框架及方法[J].环境工程,2019,37(1):192-197.
    [11]
    江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究[D].杭州:浙江大学,2015.
    [12]
    方梦祥,狄闻韬,易宁彤,等.CO2化学吸收系统污染物排放与控制研究进展[J].洁净煤技术,2020(6):1-9.
    [13]
    LIANG Z W,FU K Y,RAPHAEL I,et al.Review on current advances,future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J].Chinese Journal of Chemical Engineering,2016,24(2):278-288.
    [14]
    王键,杨剑,王中原,等.全球碳捕集与封存发展现状及未来趋势[J].环境工程,2012,30(4):118-120.
    [15]
    林海周,裴爱国,方梦祥.燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J].化工进展,2018,37(12):4874-4886.
    [16]
    韩永嘉,王树立,张鹏宇,等.CO2分离捕集技术的现状与进展[J].天然气工业,2009,29(12):79-82.
    [17]
    徐冬,张军,翟玉春,等.变压吸附分离工业废气中二氧化碳的研究进展[J].化工进展,2010,29(1):150-156

    ,162.
    [18]
    陈旭,杜涛,李刚,等.吸附工艺在碳捕集中的应用现状.中国电机工程学报,2019,39(增刊1):155-163.
    [19]
    郭智,张新妙,章晨林,等.膜分离法分离煤气中CO2材料及应用研究进展[J].现代化工,2016,36(6):42-45

    ,47.
    [20]
    孙亚伟,谢美连,刘庆岭,等.膜法分离燃煤电厂烟气中CO2的研究现状及进展[J].化工进展,2017,36(5):1880-1889.
    [21]
    龚之宝,孙伟振,李朋洲,等.无机膜分离技术及其研究进展[J].应用化工,2019,48(8):1985-1989.
    [22]
    PARK H B,KAMCEV J,ROBESON L M,et al.Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J].Science,2017,356(6343):1138-1148.
    [23]
    马光宇,李卫东,张天赋,等.高炉煤气锅炉与CCPP的发电经济性比较[J].冶金能源,2018,37(6):11-14.
    [24]
    徐志钢,樊响,周景伟,等.高炉煤气脱硫可行性工艺路线研究[J/OL].环境工程,http://kns.cnki.net/kcms/detail/11.2097.X.20191108.1429.004.html.[2020-10-19].
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]FU Wenyu, SUN Wenqiang, WANG Lianyong. ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040
    [3]YUAN Yuxuan, SHEN Kai, CHEN Chao, WU Peng, LI Bo, YAO Quansheng, ZHANG Yaping. SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 172-181. doi: 10.13205/j.hjgc.202312021
    [4]BAI Yongfeng, WANG Zhengrong, ZHAN Guoxiong, CHEN Zhen, LI Junhua. SIMULATION AND OPTIMIZATION OF CARBON CAPTURE IN COAL-FIRED FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 61-71. doi: 10.13205/j.hjgc.202309008
    [5]ZENG Qian, NI Zhe, CHEN Jun, ZHEN Shengli, LIU Zejun, LIU Jianguo, QI Changqing. ORGANIC WASTE DIGESTATE: A REVIEW OF ITS CHARACTERISTICS AND RESOURCES RECOVERY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 61-70,78. doi: 10.13205/j.hjgc.202212009
    [6]WANG Hui, ZHANG Pu, ZHU Fa-qiang, ZHUANG Jian-heng. SIMULATION STUDY ON DIFFUSION AND COLLECTION CHARACTERISTICS OF HIGH TEMPERATURE SMOKE AND DUST IN BLAST FURNACE CAST HOUSE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 123-129. doi: 10.13205/j.hjgc.202011020
    [10]Wu Fengying Wang Zhancheng Xu Bin Wu Jian, . ANALYSIS OF THE REGENERATION TECHNOLOGIES FOR DIESEL PARTICULATE FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 67-70. doi: 10.13205/j.hjgc.201506015
    [12]Meng Xin Luo Dongkun, . ECONOMIC COMPARISON OF CO2 SOURCE ROUTES FOR CARBON CAPTURE AND OIL RESERVOIR STORAGE TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 150-155. doi: 10.13205/j.hjgc.201504032
  • Cited by

    Periodical cited type(6)

    1. 李海英,薛海瑞,刘吉凯,王乔. 钢铁工业CO_2捕集技术分析. 化学通报. 2024(03): 325-330 .
    2. 尹建华,梁雄,谢小明,王小波,张云龙,陈永纲. 二氧化碳捕集、利用与封存技术应用研究. 山西化工. 2024(03): 261-262+269 .
    3. 马方清,杨子超,张啟龙,郭梦霞,张非,龙红明. 热压铁块降低高炉CO_2排放量的探究. 南方金属. 2023(04): 30-33 .
    4. 袁宇轩,沈凯,陈超,吴鹏,李博,姚全胜,张亚平. 基于ASPEN的络合铁法高炉煤气脱硫模拟与优化. 环境工程. 2023(12): 172-181 . 本站查看
    5. 孙凤,黄志甲,张样,祝立萍. 高炉煤气碳捕集对钢铁联合企业碳排放的影响. 节能技术. 2022(03): 244-247 .
    6. 张亚萍. 乙醇胺捕集燃煤烟气二氧化碳工艺模拟. 无机盐工业. 2022(08): 96-100 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.5 %FULLTEXT: 12.5 %META: 85.3 %META: 85.3 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.1 %其他: 14.1 %China: 0.3 %China: 0.3 %Mount Vernon: 0.3 %Mount Vernon: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.6 %[]: 0.6 %上海: 2.5 %上海: 2.5 %东京: 0.3 %东京: 0.3 %东莞: 0.8 %东莞: 0.8 %临汾: 0.3 %临汾: 0.3 %北京: 4.4 %北京: 4.4 %南京: 1.4 %南京: 1.4 %印度安得拉: 0.3 %印度安得拉: 0.3 %台州: 0.8 %台州: 0.8 %咸阳: 0.3 %咸阳: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.6 %唐山: 0.6 %天津: 0.8 %天津: 0.8 %太原: 0.8 %太原: 0.8 %奥斯: 0.8 %奥斯: 0.8 %安康: 0.8 %安康: 0.8 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %开封: 0.3 %开封: 0.3 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.6 %张家口: 0.6 %悉尼: 0.6 %悉尼: 0.6 %成都: 1.9 %成都: 1.9 %扬州: 0.3 %扬州: 0.3 %昆明: 1.4 %昆明: 1.4 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.8 %朝阳: 0.8 %杭州: 0.3 %杭州: 0.3 %武汉: 1.4 %武汉: 1.4 %汕头: 0.3 %汕头: 0.3 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.6 %济南: 0.6 %济源: 0.3 %济源: 0.3 %温州: 0.6 %温州: 0.6 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.6 %秦皇岛: 0.6 %绍兴: 0.3 %绍兴: 0.3 %芒廷维尤: 38.2 %芒廷维尤: 38.2 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %蒙特利尔: 1.4 %蒙特利尔: 1.4 %西宁: 5.0 %西宁: 5.0 %西安: 0.8 %西安: 0.8 %贵阳: 0.3 %贵阳: 0.3 %运城: 3.0 %运城: 3.0 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.1 %郑州: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.6 %长春: 0.6 %长沙: 0.8 %长沙: 0.8 %长治: 0.3 %长治: 0.3 %鞍山: 0.6 %鞍山: 0.6 %马鞍山: 0.3 %马鞍山: 0.3 %其他ChinaMount VernonUnited States[]上海东京东莞临汾北京南京印度安得拉台州咸阳哈尔滨唐山天津太原奥斯安康宜春宣城常德广州廊坊开封弗吉张家口悉尼成都扬州昆明晋城朝阳杭州武汉汕头沈阳济南济源温州漯河石家庄福州秦皇岛绍兴芒廷维尤芝加哥苏州蒙特利尔西宁西安贵阳运城遵义邯郸郑州重庆长春长沙长治鞍山马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (307) PDF downloads(8) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return