Citation: | ZHOU Yu-qi, CAO Qi, XU Jun-chao, LIU Chang-qing, ZHUO Gui-hua, CHEN Jian-yong, ZHENG Yu-yi. INFLUENCE OF DIFFERENT SOURCE SUBSTRATE SYSTEMS ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 123-130. doi: 10.13205/j.hjgc.202109018 |
[1] |
ZHANG J X,LI W L,LEE Jonathan,et al.Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment[J].Energy,2017,137(10):479-486.
|
[2] |
KAI F,HUAN L,ZHOU D,et al.Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste[J].Renewable Energy,2020,146(2):1588-1595.
|
[3] |
SILVA F M S,MAHLER C F,OLIVEIRA L B,et al.Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste,sewage sludge and glycerol[J].Waste Management,2018,76(6):339-349.
|
[4] |
LINDNER J,ZIELONKA S,OECHSNER H,et al.Is the continuous two-stage anaerobic digestion process well suited for all substrates?[J].Bioresource Technology,2016,200(2):470-476.
|
[5] |
RAWOOF S A A,SENTHIL K P,VO D V N,et al.Sequential production of hydrogen and methane by anaerobic digestion of organic wastes:a review[J].Environmental Chemistry Letters,2021,19(2):1043-1063.
|
[6] |
XIE S H,WICKHAM R,NGHIEM L D.Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes[J].International Biodeterioration & Biodegradation,2017,116(1):191-197.
|
[7] |
XIE S H,HAI F I,ZHAN X M,et al.Anaerobic co-digestion:a critical review of mathematical modelling for performance optimization[J].Bioresource Technology,2016,222:498-512.
|
[8] |
CHIU S L H,LO I M C.Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts[J].Environmental Science and Pollution Research,2016,23(24):24435-24450.
|
[9] |
BALDI F,PECORINI I,IANNELLI R.Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J].Renewable Energy,2019,143(12):1755-1765.
|
[10] |
CHEN Y G,LIU H,ZHENG X,et al.New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process[J].Applied Energy,2017,196(6):190-198.
|
[11] |
LI Z P,CHEN Z,YE H,et al.Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis[J].Waste Management,2018,78(8):789-799.
|
[12] |
WANG G J,LI Q,CHAOSUI Y W,et al.Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition[J].International Journal of Hydrogen Energy,2021,46(15):9666-9677.
|
[13] |
LI Y,CHEN Y G,WU J.Enhancement of methane production in anaerobic digestion process:a review[J].Applied Energy,2019,240(4):120-137.
|
[14] |
蒋金和,尹芳,王昌梅.两相厌氧消化产氢产甲烷研究进展[J].环保科技,2019,25(5):46-55.
|
[15] |
HAGOS K,ZONG J P,LI D X,et al.Anaerobic co-digestion process for biogas production:progress,challenges and perspectives[J].Renewable and Sustainable Energy Reviews,2017,76(9):1485-1496.
|
[16] |
MUSTAFA A M,CHEN X,LIN H J,et al.Effect of ammonia concentration on hythane (H2 and CH4) production in two-phase anaerobic digestion[J].International Journal of Hydrogen Energy,2019,44(50):27297-27310.
|
[17] |
SRISOWMEYA G,CHAKRAVARTHY M,NANDHINI DEVI G.Critical considerations in two-stage anaerobic digestion of food waste:a review[J].Renewable and Sustainable Energy Reviews,2020,119:10958.
|
[18] |
RAFIEENIA R,GIROTTO F,PENG W,et al.Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions[J].Waste Management,2017,59(2):194-199.
|
[19] |
陈建勇.污泥-餐厨垃圾联合厌氧发酵产氢余物产甲烷研究[D].福州:福建师范大学,2012.
|
[20] |
何美龙.基于基质调理提升污泥厌氧消化产甲烷效能研究[D].福州:福建师范大学,2018.
|
[21] |
LOGAN B E,OH S E,KIM I S,et al.Biological hydrogen production measured in batch anaerobic respirometers[J].Environmental Science & Technology,2002,36(11):2530-2535.
|
[22] |
中华人民共和国建设部.CJ/T 221-2005城市污水处理厂污泥检验方法[S].
|
[23] |
KAYHANIAN M.Ammonia inhibition in high-solids biogasification:an overview and practical solutions[J].Environmental Technology Letters,1999,20(4):355-365.
|
[24] |
MASUKO T,MINAMI A,IWASAKI N,et al.Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J].Analytical biochemistry,2005,339(1):69-72.
|
[25] |
LI Y Y,JIN Y Y,LI J H,et al.Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste[J].Applied Energy,2016,172(6):47-58.
|
[26] |
PAN Y,ZHI Z X,ZHEN G Y,et al.Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms[J].Fuel,2019,253(10):40-49.
|
[27] |
LIU C Y,LI H,ZHANG Y Y,et al.Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste[J].Bioresource Technology,2016,219(22):252-260.
|
[28] |
杨玉婷,周俊,张雪英,等.接种量及秸秆加入量对城市污泥厌氧发酵产气特性的影响[J].生物加工过程,2015,13(2):13-18.
|
[29] |
蒲贵兵,王胜军,孙可伟.接种量对泔脚发酵产氢余物甲烷化的强化研究[J].中山大学学报(自然科学版),2009,48(1):87-92,97.
|
[30] |
LIU J W,ZHAO M F,CHEN L,et al.The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste:performance,kinetics and energy recovery[J].Environmental Research,2020,189(20):109856.
|
[31] |
LUO J Y,CHEN Y G,FENG L Y.Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen[J].Environmental Science & Technology,2016,50(13):6921-6929.
|
[32] |
PAUDEL S,KANG Y J,YOOC Y S,et al.Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water[J].Waste Management,2016,61(3):484-493.
|
[33] |
CHEN X,YUAN H R,ZOU D X,et al.Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw[J].Chemical Engineering Journal,2015,273(11):254-260.
|
[34] |
WANG Q H,KUNINOBU M,OGAWA H I,et al.Degradation of volatile fatty acids in highly efficient anaerobic digestion[J].Biomass & Bioenergy,1999,16(6):407-416.
|
[35] |
GIOANNIS G D,MUNTONI A,POLETTINI A,et al.Energy recovery from one- and two-stage anaerobic digestion of food waste[J].Waste Management,2017,68(10):595-602.
|