Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
Citation: DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004

MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA

doi: 10.13205/j.hjgc.202110004
  • Received Date: 2021-07-01
    Available Online: 2022-01-26
  • Promoting the low-carbon development of the iron and steel industry has become an important part of achieving carbon peaking and carbon neutrality in China, as it's a major energy consumption and CO2 emitting industry. In this paper, we analyzed the key abatement technologies and the abatement costs for iron and steel industry under three types of scenarios and four decarbonization aspects:energy structure adjustment, process structure optimization, energy saving and emission reduction technology promotion, and CCUS technology application, to reveal the emission reduction priority of each technology. The results indicated that, under the steady development scenario, the average abatement cost for iron and steel industry was RMB 433/t CO2. The total abatement cost of all the technologies was RMB 210 billion, with a total carbon abatement volume of 490 million tons. Among the various abatement technologies, scrap-EAF had the best economic efficiency, contributing nearly half of the total abatement in the iron and steel industry, indicating that the scarp-EAF becomes an essential measure for China's iron and steel industry to achieve the target of carbon peak and carbon neutrality.
  • [1]
    WSA (World Steel Association). Steel Statistical Yearbook 2019[R/OL]. 2019.[https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html].
    [2]
    杨楠, 李艳霞, 吕晨, 等. 唐山市钢铁行业碳排放核算及达峰预测[J]. 环境工程, 2020, 38(11):44-52.
    [3]
    SHAN Y L, HUANG Q, GUAN D B, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7(1):54.
    [4]
    WU X C, ZHAO L, ZHANG Y X, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184:171-183.
    [5]
    LI Y, ZHU L. Cost of energy saving and CO2 emissions reduction in China's iron and steel sector[J]. Applied Energy, 2014, 130:603-616.
    [6]
    WSA (World Steel Association). Steel's Contribution to A Low Carbon Future and Climate Resilient Societies[R/OL]. 2017.[https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf].
    [7]
    ZHANG S H, YI B W, WORRELL E, et al. Integrated assessment of resource-energy-environment nexus in China's iron and steel industry[J]. Journal of Cleaner Production, 2019, 232:235-249.
    [8]
    REN L, ZHOU S, PENG T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J]. Renewable and Sustainable Energy Reviews, 2021, 143:110846.
    [9]
    VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653.
    [10]
    DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229.
    [11]
    魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
    [12]
    KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204.
    [13]
    WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362.
    [14]
    XIONG W M, YANG Y Z, WANG Y, et al. Marginal abatement cost curve for wind power in China:a provincial-level analysis[J]. Energy Science & Engineering, 2016, 4(4):245-255.
    [15]
    XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
    [16]
    YANG X, XI X, GUO S, et al. Carbon mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):3331-3345.
    [17]
    FAN Z Y, FRIEDMANN S J. Low-carbon production of iron and steel:technology options, economic assessment, and policy[J]. Joule, 2021, 5(4):829-862.
    [18]
    HE K, WANG L. A review of energy use and energy-efficient technologies for the iron and steel industry[J]. Renewable and Sustainable Energy Reviews, 2017, 70:1022-1039.
    [19]
    CHEN Q Q, GU Y, TANG Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies:a case study in China[J]. Applied Energy, 2018, 220:192-207.
    [20]
    李新创, 李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8):224-231.
    [21]
    李冰, 李新创, 李闯. 国内外钢铁工业能源高效利用新进展[J]. 工程研究-跨学科视野中的工程, 2017, 9(1):68-77.
    [22]
    叶友斌, 邢芳芳, 刘锟, 等. 我国钢铁企业二氧化碳排放结构探讨[J]. 环境工程, 2012, 30(增刊2):224-227,245.
    [23]
    YILMAZ C, WENDELSTORF J, TUREK T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154:488-501.
    [24]
    ABDUL QUADER M, AHMED S, DAWAL S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55:537-549.
    [25]
    NISHIOKA K, UJISAWA Y, TONOMURA S, et al. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 Project), Part 1:hydrogen reduction in the blast furnace[J]. Journal of Sustainable Metallurgy, 2016, 2(3):200-208.
    [26]
    PEI M, PETÄJÄNIEMI M, REGNELL A, et al. Toward a fossil free future with HYBRIT:development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 2020, 10(7).
    [27]
    王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义[J]. 中国冶金, 2019, 29(10):1-6.
    [28]
    AN R Y, YU B Y, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226:862-880.
    [29]
    IEA (International Energy Agency). Iron and Steel Technology Roadmap:Towards More Sustainable Steelmaking[R/OL]. 2020.[https://www.iea.org/reports/iron-and-steel-technology-roadmap].
    [30]
    蔡博峰,李琦,张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.2021.
    [31]
    CHEN W Y, YIN X, MA D. A bottom-up analysis of China's iron and steel industrial energy consumption and CO2 emissions[J]. Applied Energy, 2014, 136:1174-1183.
    [32]
    DING H, ZHENG H R, LIANG X, et al. Getting ready for carbon capture and storage in the iron and steel sector in China:assessing the value of capture readiness[J]. Journal of Cleaner Production, 2020, 244:118953.
    [33]
    LIANG X, GUO L Q, HASAN M, et al. Assessing the economics of CO2 capture in China's iron/steel sector:a case study[J]. Energy Procedia, 2019, 158:3715-3722.
    [34]
    MORRIS J, PALTSEV S, REILLY J. Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions:results from the EPPA model[J]. Environmental Modeling & Assessment, 2012, 17(4):325-336.
    [35]
    KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[C]//IAEE International Conference, 2011.
    [36]
    ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R]. MIT Joint Program on the Science and Policy of Global Change, 1998.
    [37]
    DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690.
    [38]
    CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896.
    [39]
    VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386.
    [40]
    NORDHAUS W D. Special Issue on Global Warming//The cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65.
    [41]
    蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016-2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
  • Relative Articles

    [1]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [2]FENG Yuan, ZHAO Lüxuan, LIU Bingyan, WU Kaiqing, HE Yanfang, LI Li, HUANG Junkai, WENG Rui, LIANG Mingqi. CURRENT SITUATION AND SUGGESTIONS FOR AIR POLLUTION EMISSION CONTROL OF STEEL INDUSTRY IN GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 63-70. doi: 10.13205/j.hjgc.202406008
    [3]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [4]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [5]LE Yan, HOU Jianping, FAN Xiaozhou, ZHANG Haizhen, LI Pengfei, LI Yongjun, QIU Zhiyin, LI Xuyang, WANG Dongsheng, BAI Yushun. PRINCIPLE OF A HIGH-TEMPERATURE GAS ANALYZER BASED ON INFRARED SPECTROSCOPY AND ITS APPLICATION IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 154-162. doi: 10.13205/j.hjgc.202305021
    [6]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [7]WANG Ya-xin, LIU Jun, YI Hong-hong, TANG Xiao-long, WANG Si. RESEARCH PROGRESS OF DESULFURIZATION AND DENITRATION TECHNOLOGIES FOR SINTERING FLUE GAS IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 253-261. doi: 10.13205/j.hjgc.202209034
    [8]XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033
    [9]XU Desheng, YANG Ke, DUAN Wei. VISUAL ANALYSIS OF CARBON EMISSION IN IRON & STEEL INDUSTRY BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 207-215. doi: 10.13205/j.hjgc.202201030
    [10]YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006
    [11]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [12]DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005
    [13]ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003
    [14]WANG Guan, JIAO Li-jing, WANG Hui-ming, YANG Ya-juan, WANG Hui, ZHU Xiao-hua. DEVELOPMENT STATUS OF INTELLIGENT MANUFACTURING IN IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 173-176,137. doi: 10.13205/j.hjgc.202012029
    [15]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [16]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [17]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [18]Wu Tie Zhao Chunli Liu Dajun Gu Rui, . EXPLORATION OF WASTEWATER ZERO-EMISSION TECHNOLOGIES IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 146-149. doi: 10.13205/j.hjgc.201504031
  • Cited by

    Periodical cited type(22)

    1. 吴琼,马昊,任洪波,郭明星,陈鹏,李琦芬. 基于LEAP模型的临港新片区中长期碳排放预测及减排潜力分析. 环境科学. 2024(02): 721-731 .
    2. 蔡大为,陈青月,潘建,朱德庆,杨聪聪. 金属化炉料的高炉低碳冶炼研究现状. 中国冶金. 2024(02): 9-20 .
    3. 康佳宁,张云龙,彭凇,崔鸿堃,田晓曦,纪一卓,戴敏,李小裕,谢鹏禛,刘兰翠. 实现碳中和目标的CCUS产业发展展望. 北京理工大学学报(社会科学版). 2024(02): 68-75 .
    4. 龙跃,田晨,鲍继伟,邢磊. 河北省典型钢铁企业炼铁工序碳减排潜力分析. 华北理工大学学报(自然科学版). 2024(02): 1-8+17 .
    5. 田旭,李照令,耿涌,陈伟. 碳中和目标下中国钢铁行业碳减排的资源环境影响. 资源科学. 2024(04): 700-716 .
    6. 张纪伟,陈华勇,邓一荣,张俊岭. 金属行业碳排放研究现状与发展趋势. 地质通报. 2024(06): 1021-1031 .
    7. 王敏,吴映梅,王洋,郭一航,胡平平,王阳. 中国行业碳排放动态变化特征及网络结构演化. 环境科学. 2024(10): 5591-5600 .
    8. 宁希翼,万迎峰,韩晶. 钢铁行业“双碳”标准体系建设的探讨. 中国标准化. 2024(21): 80-86 .
    9. 金智新,曹孟涛,王宏伟. “中等收入”与新“双控”背景下煤炭行业转型发展新机遇. 煤炭科学技术. 2023(01): 45-58 .
    10. 张利娜. 钢铁行业低碳技术应用及发展研究. 冶金能源. 2023(02): 3-6+32 .
    11. 张春晖,肖楠,苏佩东,唐元晖,吴盟盟,刘新民,刘建军. 氢能、碳减排与可持续发展. 能源与环保. 2023(07): 1-9 .
    12. 徐英,王晓敏,张国杰,王吉明,陈磊,张永发. 炭催化富CH_4气CO_2重整制合成气及动力学研究. 山东化工. 2023(15): 1-5 .
    13. 李彬,潘雨情,文华杰,顾程镓,陈宋宋,祁兵. 基于碳减排的氢电资源耦合发展现状及展望. 供用电. 2023(10): 106-113 .
    14. 周孝信. 《基于机器学习的电力系统安全评估及控制技术》. 供用电. 2023(10): 3 .
    15. 宋晓聪,杜帅,邓陈宁,谢明辉,沈鹏,赵慈,陈忱,刘晓宇. 钢铁行业生命周期碳排放核算及减排潜力评估. 环境科学. 2023(12): 6630-6642 .
    16. 王强,王玮,李强,吴明,贺淑珍,郝永寿. 太钢低碳低排放烧结技术研究与应用. 烧结球团. 2022(01): 104-111 .
    17. 岳婷,李梦婷,陈红,龙如银,王宇杰. 碳中和研究热点与演进趋势——基于科学知识图谱. 资源科学. 2022(04): 701-715 .
    18. 李庄,许友静,易文杰,黄懿,刘兴旺,李翔. 钢铁企业低碳技术评价选择与应用. 环境科学研究. 2022(06): 1538-1546 .
    19. 赵业卓,郭忠森,林壮,谢磊,杨晓航. CO_2分离捕集技术研究进展. 炼油与化工. 2022(03): 17-19 .
    20. 禹湘,娄峰,谭畅. 基于CIE-CEAM模型的中国工业“双碳”路径模拟. 中国人口·资源与环境. 2022(07): 49-56 .
    21. 逄靖,王振阳,张建良,张树石. HIsmelt熔融还原主反应器能质流转模型构建与验证. 钢铁. 2022(09): 57-64 .
    22. 薛英岚,张静,刘宇,陈瑜,孙健,蒋洪强,张伟,曹东. “双碳”目标下钢铁行业控煤降碳路线图. 环境科学. 2022(10): 4392-4400 .

    Other cited types(18)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 83.7 %META: 83.7 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.3 %其他: 15.3 %其他: 0.7 %其他: 0.7 %China: 2.2 %China: 2.2 %[]: 0.1 %[]: 0.1 %上海: 1.7 %上海: 1.7 %东莞: 0.8 %东莞: 0.8 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %伦敦: 0.6 %伦敦: 0.6 %保定: 0.3 %保定: 0.3 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 14.4 %北京: 14.4 %南京: 1.7 %南京: 1.7 %南通: 0.3 %南通: 0.3 %厦门: 0.2 %厦门: 0.2 %台州: 1.6 %台州: 1.6 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.2 %天津: 1.2 %太原: 0.1 %太原: 0.1 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.3 %广州: 1.3 %廊坊: 0.1 %廊坊: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 1.9 %张家口: 1.9 %成都: 0.3 %成都: 0.3 %扬州: 0.5 %扬州: 0.5 %日照: 0.1 %日照: 0.1 %昆明: 1.3 %昆明: 1.3 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.0 %杭州: 2.0 %武威: 0.1 %武威: 0.1 %武汉: 1.2 %武汉: 1.2 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.7 %济南: 0.7 %济源: 0.2 %济源: 0.2 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %渭南: 0.3 %渭南: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.6 %漯河: 1.6 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 0.3 %苏州: 0.3 %茂名: 0.1 %茂名: 0.1 %莆田: 0.1 %莆田: 0.1 %蒙特利尔: 0.5 %蒙特利尔: 0.5 %衢州: 1.5 %衢州: 1.5 %西宁: 13.7 %西宁: 13.7 %西安: 0.5 %西安: 0.5 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.6 %运城: 1.6 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %银川: 0.1 %银川: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 1.0 %阳泉: 1.0 %其他其他China[]上海东莞临汾临沂伦敦保定信阳六安兰州北京南京南通厦门台州呼和浩特咸阳哈尔滨唐山嘉兴大连天津太原宜昌宣城常州常德广安广州廊坊弗吉张家口成都扬州日照昆明晋城朝阳杭州武威武汉汕头沈阳济南济源淄博淮北深圳温州渭南湖州漯河石家庄芒廷维尤芝加哥苏州茂名莆田蒙特利尔衢州西宁西安西雅图贵阳运城遵义邯郸郑州重庆银川长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (719) PDF downloads(34) Cited by(40)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return