Citation: | DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004 |
[1] |
WSA (World Steel Association). Steel Statistical Yearbook 2019[R/OL]. 2019.[https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html].
|
[2] |
杨楠, 李艳霞, 吕晨, 等. 唐山市钢铁行业碳排放核算及达峰预测[J]. 环境工程, 2020, 38(11):44-52.
|
[3] |
SHAN Y L, HUANG Q, GUAN D B, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7(1):54.
|
[4] |
WU X C, ZHAO L, ZHANG Y X, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184:171-183.
|
[5] |
LI Y, ZHU L. Cost of energy saving and CO2 emissions reduction in China's iron and steel sector[J]. Applied Energy, 2014, 130:603-616.
|
[6] |
WSA (World Steel Association). Steel's Contribution to A Low Carbon Future and Climate Resilient Societies[R/OL]. 2017.[https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf].
|
[7] |
ZHANG S H, YI B W, WORRELL E, et al. Integrated assessment of resource-energy-environment nexus in China's iron and steel industry[J]. Journal of Cleaner Production, 2019, 232:235-249.
|
[8] |
REN L, ZHOU S, PENG T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J]. Renewable and Sustainable Energy Reviews, 2021, 143:110846.
|
[9] |
VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653.
|
[10] |
DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229.
|
[11] |
魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
|
[12] |
KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204.
|
[13] |
WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362.
|
[14] |
XIONG W M, YANG Y Z, WANG Y, et al. Marginal abatement cost curve for wind power in China:a provincial-level analysis[J]. Energy Science & Engineering, 2016, 4(4):245-255.
|
[15] |
XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
|
[16] |
YANG X, XI X, GUO S, et al. Carbon mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):3331-3345.
|
[17] |
FAN Z Y, FRIEDMANN S J. Low-carbon production of iron and steel:technology options, economic assessment, and policy[J]. Joule, 2021, 5(4):829-862.
|
[18] |
HE K, WANG L. A review of energy use and energy-efficient technologies for the iron and steel industry[J]. Renewable and Sustainable Energy Reviews, 2017, 70:1022-1039.
|
[19] |
CHEN Q Q, GU Y, TANG Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies:a case study in China[J]. Applied Energy, 2018, 220:192-207.
|
[20] |
李新创, 李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8):224-231.
|
[21] |
李冰, 李新创, 李闯. 国内外钢铁工业能源高效利用新进展[J]. 工程研究-跨学科视野中的工程, 2017, 9(1):68-77.
|
[22] |
叶友斌, 邢芳芳, 刘锟, 等. 我国钢铁企业二氧化碳排放结构探讨[J]. 环境工程, 2012, 30(增刊2):224-227,245.
|
[23] |
YILMAZ C, WENDELSTORF J, TUREK T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154:488-501.
|
[24] |
ABDUL QUADER M, AHMED S, DAWAL S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55:537-549.
|
[25] |
NISHIOKA K, UJISAWA Y, TONOMURA S, et al. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 Project), Part 1:hydrogen reduction in the blast furnace[J]. Journal of Sustainable Metallurgy, 2016, 2(3):200-208.
|
[26] |
PEI M, PETÄJÄNIEMI M, REGNELL A, et al. Toward a fossil free future with HYBRIT:development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 2020, 10(7).
|
[27] |
王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义[J]. 中国冶金, 2019, 29(10):1-6.
|
[28] |
AN R Y, YU B Y, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226:862-880.
|
[29] |
IEA (International Energy Agency). Iron and Steel Technology Roadmap:Towards More Sustainable Steelmaking[R/OL]. 2020.[https://www.iea.org/reports/iron-and-steel-technology-roadmap].
|
[30] |
蔡博峰,李琦,张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.2021.
|
[31] |
CHEN W Y, YIN X, MA D. A bottom-up analysis of China's iron and steel industrial energy consumption and CO2 emissions[J]. Applied Energy, 2014, 136:1174-1183.
|
[32] |
DING H, ZHENG H R, LIANG X, et al. Getting ready for carbon capture and storage in the iron and steel sector in China:assessing the value of capture readiness[J]. Journal of Cleaner Production, 2020, 244:118953.
|
[33] |
LIANG X, GUO L Q, HASAN M, et al. Assessing the economics of CO2 capture in China's iron/steel sector:a case study[J]. Energy Procedia, 2019, 158:3715-3722.
|
[34] |
MORRIS J, PALTSEV S, REILLY J. Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions:results from the EPPA model[J]. Environmental Modeling & Assessment, 2012, 17(4):325-336.
|
[35] |
KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[C]//IAEE International Conference, 2011.
|
[36] |
ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R]. MIT Joint Program on the Science and Policy of Global Change, 1998.
|
[37] |
DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690.
|
[38] |
CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896.
|
[39] |
VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386.
|
[40] |
NORDHAUS W D. Special Issue on Global Warming//The cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65.
|
[41] |
蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016-2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
|
[1] | WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009 |
[2] | FENG Yuan, ZHAO Lüxuan, LIU Bingyan, WU Kaiqing, HE Yanfang, LI Li, HUANG Junkai, WENG Rui, LIANG Mingqi. CURRENT SITUATION AND SUGGESTIONS FOR AIR POLLUTION EMISSION CONTROL OF STEEL INDUSTRY IN GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 63-70. doi: 10.13205/j.hjgc.202406008 |
[3] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[4] | DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004 |
[5] | LE Yan, HOU Jianping, FAN Xiaozhou, ZHANG Haizhen, LI Pengfei, LI Yongjun, QIU Zhiyin, LI Xuyang, WANG Dongsheng, BAI Yushun. PRINCIPLE OF A HIGH-TEMPERATURE GAS ANALYZER BASED ON INFRARED SPECTROSCOPY AND ITS APPLICATION IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 154-162. doi: 10.13205/j.hjgc.202305021 |
[6] | ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020 |
[7] | WANG Ya-xin, LIU Jun, YI Hong-hong, TANG Xiao-long, WANG Si. RESEARCH PROGRESS OF DESULFURIZATION AND DENITRATION TECHNOLOGIES FOR SINTERING FLUE GAS IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 253-261. doi: 10.13205/j.hjgc.202209034 |
[8] | XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033 |
[9] | XU Desheng, YANG Ke, DUAN Wei. VISUAL ANALYSIS OF CARBON EMISSION IN IRON & STEEL INDUSTRY BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 207-215. doi: 10.13205/j.hjgc.202201030 |
[10] | YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006 |
[11] | LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002 |
[12] | DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005 |
[13] | ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003 |
[14] | WANG Guan, JIAO Li-jing, WANG Hui-ming, YANG Ya-juan, WANG Hui, ZHU Xiao-hua. DEVELOPMENT STATUS OF INTELLIGENT MANUFACTURING IN IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 173-176,137. doi: 10.13205/j.hjgc.202012029 |
[15] | ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001 |
[16] | CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007 |
[17] | YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008 |
[18] | Wu Tie Zhao Chunli Liu Dajun Gu Rui, . EXPLORATION OF WASTEWATER ZERO-EMISSION TECHNOLOGIES IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 146-149. doi: 10.13205/j.hjgc.201504031 |