Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Min-hui, LIU Shuang, QIAN Hao, WANG Zheng. PILOT-SCALE OPTIMIZATION OF OZONE DOSAGE IN UP FLOW ACTIVATED CARBON-ULTRAFILTRATION COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 72-77. doi: 10.13205/j.hjgc.202110010
Citation: WU Min-hui, LIU Shuang, QIAN Hao, WANG Zheng. PILOT-SCALE OPTIMIZATION OF OZONE DOSAGE IN UP FLOW ACTIVATED CARBON-ULTRAFILTRATION COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 72-77. doi: 10.13205/j.hjgc.202110010

PILOT-SCALE OPTIMIZATION OF OZONE DOSAGE IN UP FLOW ACTIVATED CARBON-ULTRAFILTRATION COMBINED PROCESS

doi: 10.13205/j.hjgc.202110010
  • Received Date: 2020-12-28
    Available Online: 2022-01-26
  • In order to optimize the ozone dosage in an up flow activated carbon-ultrafiltration combined process for the water works, pilot-scale experiments were conducted to study the impact of ozone dosages on the processing efficiency of each unit, and the central composite response surface design was adopted to study the effect of ozone dosage on TOC and trihalomethane formation potential (THMFP), meanwhile, the removal efficiency of typical odor compounds and antibiotics in Jinze Reservoir was also analyzed. The results showed that excessively high pre-ozone dosage was not conducive to the removal of turbidity, UV254 and CODMn in the coagulatory settler, while exceedingly high post-ozone dosage was not conducive to the removal of UV254 and CODMn in the activated carbon filter. For the removal of TOC and THMFP in Jinze Reservoir, the optimized ozone dosage range was 0.6~0.65 mg/L and 1.35~1.4 mg/L for the pre-ozone and post-ozone dosage, respectively. Moreover, the pilot-scale process was highly effective in removing typical antibiotics and odor compounds except 1,4-dichlorobenzene and ethylbenzene in Jinze reservoir.
  • [1]
    张平允, 刘慧杰, 倪奔, 等. 荷负电功能超滤膜组件饮用水深度处理工艺[J]. 净水技术, 2019, 38(12):74-78

    , 85.
    [2]
    陈皓珅, 吴俊业, 沈恺乐, 等. 不同流向臭氧生物活性炭工艺对比分析[J]. 净水技术, 2020, 39(2):57-65.
    [3]
    高俊贤, 阮智宇, 徐科威, 等. 臭氧氧化工艺对污水处理厂二级出水的处理特性[J]. 环境工程, 2020, 38(7):88-92.
    [4]
    冯俊凯, 陶辉, 陈卫, 等. 不同水源下臭氧/生物活性炭运行参数的优化[J]. 中国给水排水, 2020, 36(9):47-51.
    [5]
    RODGER B B, ANDREW D E, EUGENE W R, et al. Standard Methods for the Examination of Water and Wastewater 23rd Edition[M]. Denver:American Public Health Association, 2017.
    [6]
    YAN M Q, WANG D S, SHI B Y, et al. Effect of pre-ozonation on optimized coagulation of a typical North China source water[J]. Chemosphere, 2007, 69(11):1695-1702.
    [7]
    HUERTA-FONTELA M, GALCERAN M T, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment[J]. Water Research, 2011, 45(3):1432-1442.
    [8]
    SWIETLIK J, DABROWSKA A, RACZYK-STANISAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3):547-558.
    [9]
    MANSOUR F, AL-HINDI M, YAHFOUFI R, et al. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions:a review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 17(1):109-145.
    [10]
    KUSIC H, PETERNEL I, KOPRIVANAC N, et al. Iron-activated persulfate oxidation of an azo dye in model wastewater:influence of iron activator type on process optimization[J]. Journal of Environmental Engineering, 2011, 137(6):454-463.
  • Relative Articles

    [1]PAN Kanghong, MING Leiqiang, GAO Pei, WANG Xudong, LI Xianguo, ZHANG Dahai. SYNERGETIC PRETREATMENT OF EXCESS SLUDGE BY ENHANCING SLUDGE LYSIS BY HYDRODYNAMIC CAVITATION COMBINED WITH OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 126-134. doi: 10.13205/j.hjgc.202401017
    [2]LI Simin, YANG Hui, FU Yujie, XIAO Feng, GUO Jianning, LIN Chuanggui. CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
    [3]SUN Ye, PANG Lin-lin, LI Jie, LIU Yong, HU Xiao-tu, LI Xiao-bin, ZHU Tian-le. NITROGEN BALANCE OF OZONE A COMBINED DENITRATION PROCESS OF DEEP OXIDATION AND LIQUID-PHASE ABSORPTION: A CASE STUDY ON A 300 m2 SINTERING FLUE GAS OF AN IRON & STEEL COMPANY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 186-191. doi: 10.13205/j.hjgc.202209025
    [4]SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024
    [5]KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
    [6]WANG Shu-ting, WEI Jian-jian, MA Xue-rou, MA De-hua, LI Jian-sheng. CHANGES OF ACUTE TOXICITY AND FLUORESCENCE SPECTRUM PROPERTIES OF PHENOL WASTEWATER TREATED BY OZONE ADVANCED OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 69-76. doi: 10.13205/j.hjgc.202111008
    [7]CHI Tong-tong, XU Ran-yun, LI Fei-fei, CHEN Lv-jun. CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 119-126. doi: 10.13205/j.hjgc.202111015
    [8]GAO Jun-xian, RUAN Zhi-yu, XU Ke-wei, JIANG Hai-dong, ZHANG Li, WANG Yan, ZHENG Kai-kai, LI Ji. CHARACTERISTICS OF OZONE OXIDATION PROCESS ON TREATMENT OF SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 88-92,18. doi: 10.13205/j.hjgc.202007014
  • Cited by

    Periodical cited type(1)

    1. 王德生,贾伟建. 青岛某水厂建设工程方案设计探讨. 节能与环保. 2022(07): 34-36 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 87.1 %META: 87.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.1 %其他: 14.1 %[]: 0.4 %[]: 0.4 %上海: 0.8 %上海: 0.8 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %乌鲁木齐: 1.1 %乌鲁木齐: 1.1 %北京: 1.5 %北京: 1.5 %十堰: 0.8 %十堰: 0.8 %南京: 0.4 %南京: 0.4 %台州: 0.4 %台州: 0.4 %咸阳: 0.4 %咸阳: 0.4 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 0.8 %天津: 0.8 %宣城: 0.4 %宣城: 0.4 %常州: 0.8 %常州: 0.8 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 2.7 %张家口: 2.7 %成都: 0.4 %成都: 0.4 %扬州: 2.3 %扬州: 2.3 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.1 %杭州: 1.1 %柳州: 1.1 %柳州: 1.1 %武汉: 0.8 %武汉: 0.8 %汕头: 0.4 %汕头: 0.4 %济源: 0.8 %济源: 0.8 %温州: 1.5 %温州: 1.5 %湖州: 0.4 %湖州: 0.4 %漯河: 3.0 %漯河: 3.0 %芒廷维尤: 27.4 %芒廷维尤: 27.4 %苏州: 0.4 %苏州: 0.4 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.4 %衡阳: 0.4 %衢州: 1.1 %衢州: 1.1 %西宁: 20.5 %西宁: 20.5 %西安: 0.4 %西安: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 5.3 %运城: 5.3 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.9 %郑州: 1.9 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %阳泉: 0.4 %阳泉: 0.4 %其他[]上海东莞临汾乌鲁木齐北京十堰南京台州咸阳唐山嘉兴天津宣城常州常德广州张家口成都扬州昆明晋城朝阳杭州柳州武汉汕头济源温州湖州漯河芒廷维尤苏州衡水衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (227) PDF downloads(8) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return