Citation: | XIONG Fu-zhong, WEN Dong-hui. ADVANCES OF HIGHLY-EFFICIENT TECHNOLOGIES AND THEORIES FOR REFRACTORY INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 1-15,40. doi: 10.13205/j.hjgc.202111001 |
[1] |
CAI Q Q, LEE B C Y, ONG S L, et al.Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment:recent advances, challenges and perspective[J].Water Research,2021, 190:116692.
|
[2] |
LIANG J Y, NING X A, KONG M Y, et al.Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater[J].Environmental Pollution,2017, 231:115-122.
|
[3] |
RICHARDSON S D, KIMURA S Y.Water Analysis:emerging Contaminants and Current Issues[J].Analytical Chemistry,2020, 92(1):473-505.
|
[4] |
TEH C Y, BUDIMAN P M, SHAK K P Y, et al.Recent advancement of coagulation-flocculation and its application in wastewater treatment[J].Industrial & Engineering Chemistry Research,2016, 55(16):4363-4389.
|
[5] |
DOTTO J, FAGUNDES-KLEN M R, VEIT M T, et al.Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J].Journal of Cleaner Production,2019, 208:656-665.
|
[6] |
ZHAO C L, ZHOU J Y, YAN Y, et al.Application of coagulation/flocculation in oily wastewater treatment:a review[J].Science of the Total Environment,2021, 765:142795.
|
[7] |
CHANGOTRA R, RAJPUT H, GUIN J P, et al.Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater[J].Chemical Engineering Journal,2019, 370:595-605.
|
[8] |
LV M, ZHANG Z H, ZENG J Y, et al.Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment[J].Separation and Purification Technology,2019, 212:337-343.
|
[9] |
BAHRODIN M B, ZAIDI N S, HUSSEIN N, et al.Recent advances on coagulation-based treatment of wastewater:transition from chemical to natural coagulant[J].Current Pollution Reports,2021,7:379-391.
|
[10] |
ETCHEPARE R, OLIVEIRA H, AZEVEDO A, et al.Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J].Separation and Purification Technology,2017, 186:326-332.
|
[11] |
魏婕, 王若男, 蒋毓婷, 等.微纳气浮法用于油墨废水处理实验[J].环境工程,2020, 38(12):13-18
,85.
|
[12] |
PEREIRA M D, BORGES A C, HELENO F F, et al.Treatment of synthetic milk industry wastewater using batch dissolved air flotation[J].Journal of Cleaner Production,2018, 189:729-737.
|
[13] |
齐亚兵, 何佳玮, 冉佳城, 等.萃取法处理含酚废水的工艺[J].应用化工,2021, 50(4):961-964.
|
[14] |
GUO C, TAN Y T, YANG S Y, et al.Development of phenols recovery process with novel solvent methyl propyl ketone for extracting dihydric phenols from coal gasification wastewater[J].Journal of Cleaner Production,2018, 198:1632-1640.
|
[15] |
李玲密, 宋宝华, 王中原, 等.高含盐工业废水蒸发结晶探讨[J].环境工程,2014, 32(增刊1):202-205.
|
[16] |
LIU D, LIU Q Q, ZHANG Y.Research progress on zero discharge and resource utilization of industrial high-salt wastewater[J].Clean-Soil Air Water,2021, 49(5):2000410.
|
[17] |
杨晖, 王锐, 付梦晓, 等.冷冻复合法处理高盐高有机物废水[J].环境工程学报,2021, 15(2):537-544.
|
[18] |
YAN Z Q, ZENG L M, LI Q, et al.Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling[J].Separation and Purification Technology,2016, 166:135-141.
|
[19] |
刘俊逸, 张晓昀, 黄青, 等.先进吸附材料在含酚工业废水中应用的研究进展[J].水处理技术,2021, 47(2):16-21
,37.
|
[20] |
周兵, 朱兆坚, 王宁, 等.乙酰乙酰苯胺废水资源化预处理技术研究与工程应用[J].中国给水排水,2021, 37(8):160-163.
|
[21] |
CRINI G, LICHTFOUSE E, WILSON L D, et al.Conventional and non-conventional adsorbents for wastewater treatment[J].Environmental Chemistry Letters,2019, 17(1):195-213.
|
[22] |
NGUYEN C H, JUANG R S.Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse[J].Journal of Industrial and Engineering Chemistry,2019, 76:296-309.
|
[23] |
郑怀礼, 蒋君怡, 万鑫源, 等.磁性纳米颗粒的制备及其复合材料吸附处理工业废水的研究进展[J].中国环境科学,2021,41(8):1-14.
|
[24] |
YI Q Z, ZHANG Y, GAO Y X, et al.Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis:simultaneous reduction of COD and ARGs[J].Water Research,2017, 110:211-217.
|
[25] |
SONG G Q, YU Y, LIU T, et al.Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater[J].Journal of Hazardous Materials,2019, 369:465-473.
|
[26] |
MIN H C, HU D X, WANG H C, et al.Electrochemical-assisted hydrolysis/acidification-based processes as a cost-effective and efficient system for pesticide wastewater treatment[J].Chemical Engineering Journal,2020, 397:125417.
|
[27] |
ZHANG M H, DONG H, ZHAO L, et al.A review on Fenton process for organic wastewater treatment based on optimization perspective[J].Science of the Total Environment,2019, 670:110-121.
|
[28] |
王心言, 宋书巧, 宇鹏.垃圾渗滤液特性分析及Fenton预处理研究[J].工业安全与环保,2021, 47(1):78-83.
|
[29] |
程铭, 陈威, 杨秋云, 等.Fenton预处理+物化生化组合工艺处理抗生素废水[J].给水排水,2021, 57(3):100-105.
|
[30] |
BRILLAS E, GARCIA-SEGURA S.Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes:a review on the relevance of phenol as model molecule[J].Separation and Purification Technology,2020, 237:116337.
|
[31] |
ZHU X Y, CHEN X J, YANG Z M, et al.Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J].Chemical Engineering Journal,2018, 338:46-54.
|
[32] |
GUO T, JI Y, ZHAO J W, et al.Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system[J].Water Research,2020, 186:116331.
|
[33] |
汪彩琴, 高心怡, 陈辉, 等.微电解技术处理难降解工业废水的研究进展[J].化工环保,2016, 36(5):477-481.
|
[34] |
王毅博, 冯民权, 刘永红, 等.铁碳微电解技术在难治理废水中的研究进展[J].化工进展,2018, 37(8):3188-3196.
|
[35] |
张幺玄, 李萌, 廉鹏, 等.铁炭微电解/Fenton超声氧化处理HMX生产废水[J].应用化工,2020, 49(7):1673-1678.
|
[36] |
李永连.铁碳-Fenton法强化预处理邻硝基对甲苯酚废水[J].工业水处理,2021, 41(5):99-103.
|
[37] |
肖扬. 铁碳微电解耦合Fenton法预处理甲硝唑制药废水的研究[D]. 上海:上海大学,2019.
|
[38] |
HUANG C, PENG F, GUO H J, et al.Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment:long-term study and scale up[J].Chemical Engineering Journal,2018, 351:697-707.
|
[39] |
STAZI V, TOMEI M C.Enhancing anaerobic treatment of domestic wastewater:state of the art, innovative technologies and future perspectives[J].Science of the Total Environment,2018, 635:78-91.
|
[40] |
van LIER J B, van DER ZEE F P, FRIJTERS C T M J, et al.Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment[J].Reviews in Environmental Science and Bio-Technology,2015, 14(4):681-702.
|
[41] |
SHI X Q, LEONG K Y, NG H Y.Anaerobic treatment of pharmaceutical wastewater:a critical review[J].Bioresource Technology,2017, 245:1238-1244.
|
[42] |
LI Z H, HU Y Y, LIU C Y, et al.Performance and microbial community of an expanded granular sludge bed reactor in the treatment of cephalosporin wastewater[J].Bioresource Technology,2019, 275:94-100.
|
[43] |
FUJIHIRA T, SEO S, YAMAGUCHI T, et al.High-rate anaerobic treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery[J].Bioresource Technology,2018, 263:145-152.
|
[44] |
JIA S Y, HAN H J, ZHUANG H F, et al.Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition[J].Bioresource Technology,2015, 192:507-513.
|
[45] |
梁定超, 胡晓东, 萧灿强, 等.内循环厌氧反应器处理制浆造纸废水的效能及影响因素[J].水处理技术,2019, 45(9):84-88.
|
[46] |
KONG Z, LI L, XUE Y, et al.Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:a review[J].Journal of Cleaner Production,2019, 231:913-927.
|
[47] |
SHAHID M K, KASHIF A, ROUT P R, et al.A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives[J].Journal of Environmental Management,2020, 270:110909.
|
[48] |
SIERRA J D M, OOSTERKAMP M J, WANG W, et al.Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater:overcoming high salinity[J].Chemical Engineering Journal,2019, 366:480-490.
|
[49] |
KAYA Y, BACAKSIZ A M, BAYRAK H, et al.Investigation of membrane fouling in an anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater[J].Journal of Water Process Engineering,2019, 31:100822.
|
[50] |
CHEN L L, CHENG P J, YE L, et al.Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater[J].Bioresource Technology,2020, 302:122805.
|
[51] |
YANG S M, ZHANG Q, LEI Z, et al.Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors[J].Bioresource Technology,2019, 294:122137.
|
[52] |
LIU Y N, ZHANG X B, NGO H H, et al.Specific approach for membrane fouling control and better treatment performance of an anaerobic submerged membrane bioreactor[J].Bioresource Technology,2018, 268:658-664.
|
[53] |
XU B Y, NG T C A, HUANG S J, et al.Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR[J].Water Research,2020, 169:115251.
|
[54] |
ZHENG M Q, ZHU H, HAN Y X, et al.Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale[J].Bioresource Technology,2019, 288:121590.
|
[55] |
YAKAMERCAN E, AYGVN A.Fate and removal of pentachlorophenol and diethylhexyl phthalate from textile industry wastewater by sequencing batch biofilm reactor:effects of hydraulic and solid retention times[J].Journal of Environmental Chemical Engineering,2021, 9(4):105436.
|
[56] |
CHEN J, LIU Y S, ZHANG J N, et al.Removal of antibiotics from piggery wastewater by biological aerated filter system:treatment efficiency and biodegradation kinetics[J].Bioresource Technology,2017, 238:70-77.
|
[57] |
WINKLER M K H, MEUNIER C, HENRIET O, et al.An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater[J].Chemical Engineering Journal,2018, 336:489-502.
|
[58] |
GONZALEZ-MARTINEZ A, MUNOZ-PALAZON B, RODRIGUEZ-SANCHEZ A, et al.Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland[J].Bioresource Technology,2017, 239:180-189.
|
[59] |
LIANG X Y, GAO B Y, NI S Q.Effects of magnetic nanoparticles on aerobic granulation process[J].Bioresource Technology,2017, 227:44-49.
|
[60] |
NANCHARAIAH Y V, REDDY G K K.Aerobic granular sludge technology:mechanisms of granulation and biotechnological applications[J].Bioresource Technology,2018, 247:1128-1143.
|
[61] |
CAI F R, LEI L R, LI Y M, et al.A review of aerobic granular sludge (AGS) treating recalcitrant wastewater:Refractory organics removal mechanism, application and prospect[J].Science of the Total Environment,2021, 782:146852.
|
[62] |
CHEN C M, MING J, YOZA B A, et al.Characterization of aerobic granular sludge used for the treatment of petroleum wastewater[J].Bioresource Technology,2019, 271:353-359.
|
[63] |
MUNOZ-PALAZON B, RODRIGUEZ-SANCHEZ A, HURTADO-MARTINEZ M, et al.Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations[J].Journal of Hazardous Materials,2019, 376:58-67.
|
[64] |
FAROOQI I H, BASHEER F.Treatment of Adsorbable Organic Halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR[J].Journal of Water Process Engineering,2017, 19:60-66.
|
[65] |
LIN H H, MA R, HU Y P, et al.Reviewing bottlenecks in aerobic granular sludge technology:slow granulation and low granular stability[J].Environmental Pollution,2020, 263:114638.
|
[66] |
ZHANG Z M, CAO R J, JIN L N, et al.The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J].Science of the Total Environment,2019, 673:83-91.
|
[67] |
TAN C H, KOH K S, XIE C, et al.The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules[J].Isme Journal,2014, 8(6):1186-1197.
|
[68] |
RAPER E, STEPHENSON T, ANDERSON D R, et al.Industrial wastewater treatment through bioaugmentation[J].Process Safety and Environmental Protection,2018, 118:178-187.
|
[69] |
BAI Y H, SUN Q H, SUN R H, et al.Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J].Environmental Science & Technology,2011, 45(5):1940-1948.
|
[70] |
LIANG J, LI W, ZHANG H L, et al.Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process[J].Chemical Engineering Journal,2018, 338:176-183.
|
[71] |
ZHANG B, LENS P N L, SHI W X, et al.Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a lab-scale photobioreactor[J].Chemical Engineering Journal,2018, 334:2373-2382.
|
[72] |
贾艳萍, 姜成, 郭泽辉, 等.印染废水深度处理及回用研究进展[J].纺织学报,2017, 38(8):172-180.
|
[73] |
刘美琴, 宋秀兰.Fe2+激活过硫酸盐耦合活性炭深度处理焦化废水[J].中国环境科学,2018, 38(4):1377-1384.
|
[74] |
王姣, 陈景辉, 张艳, 等.纳滤工艺深度处理焦化废水的中试研究[J].工业水处理,2017, 37(7):55-57
,95.
|
[75] |
BABU D S, SRIVASTAVA V, NIDHEESH P V, et al.Detoxification of water and wastewater by advanced oxidation processes[J].Science of the Total Environment,2019, 696:133961.
|
[76] |
徐富, 邵金兰, 张彩吉, 等.Fenton流化床工艺在印染废水深度处理中的工程应用[J].给水排水,2020, 56(3):112-116.
|
[77] |
张恒, 李淑敏, 刘媛, 等.微波强化Fenton技术对焦化废水生化出水的深度处理[J].环境工程学报,2020, 14(6):1495-1502.
|
[78] |
陈婷, 赵琪, 陈泉源, 等.不同光源照射下天然含铁矿物催化H2O2深度处理印染废水效果对比[J].环境工程学报,2021, 15(5):1558-1566.
|
[79] |
孔涛, 任诺, 陈春茂, 等.多金属氧化物催化臭氧氧化有机污染物的研究进展[J].工业水处理,2021,41(7):1-18.
|
[80] |
CHÁVEZ A M, GIMENO O, REY A, et al.Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs[J].Chemical Engineering Journal,2019, 361:89-98.
|
[81] |
MANSOURI L, TIZAOUI C, GEISSEN S U, et al.A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J].Journal of Hazardous Materials,2019, 363:401-411.
|
[82] |
SOUBH A M, BAGHDADI M, ABDOLI M A, et al.Activation of persulfate using an industrial iron-rich sludge as an efficient nanocatalyst for landfill leachate treatment[J].Catalysts,2018, 8(5):218.
|
[83] |
吕志超, 宋秀兰, 赵青云.颗粒活性炭激活过硫酸盐氧化法深度处理焦化废水[J].工业水处理,2021, 41(2):88-91
,96.
|
[84] |
李思岐, 车丽君, 王晓雪, 等.超声波技术在有机废水处理中的研究进展[J].应用化工,2017, 46(7):1405-1408.
|
[85] |
MIKLOS D B, REMY C, JEKEL M, et al.Evaluation of advanced oxidation processes for water and wastewater treatment:a critical review[J].Water Research,2018, 139:118-131.
|
[86] |
LI J N, WANG S Z, LI Y H, et al.Supercritical water oxidation of semi-coke wastewater:effects of operating parameters, reaction mechanism and process enhancement[J].Science of the Total Environment,2020, 710:134396.
|
[87] |
STUTZENSTEIN P, WEINER B, KOHLER R, et al.Wet oxidation of process water from hydrothermal carbonization of biomass with nitrate as oxidant[J].Chemical Engineering Journal,2018, 339:1-6.
|
[88] |
胡承志, 刘会娟, 曲久辉.电化学水处理技术研究进展[J].环境工程学报,2018, 12(3):677-696.
|
[89] |
郑利, 郑鹏飞, 郑翔, 等.芬顿-流化床技术在废纸造纸废水深度处理上的应用[J].给水排水,2021, 57(1):108-111.
|
[90] |
HE C, WANG J B, WANG C R, et al.Catalytic ozonation of bio-treated coking wastewater in continuous pilot-and full-scale system:efficiency, catalyst deactivation and in-situ regeneration[J].Water Research,2020, 183:116090.
|
[91] |
叶刚. PS高级氧化技术深度处理造纸废水工程应用及智能化控制研究[D]. 广州:华南理工大学,2020.
|
[92] |
张晶, 何可莹, 魏峻峰, 等.超声波强化臭氧技术处理造纸废水研究[J].大连大学学报,2012, 33(6):59-62
,70.
|
[93] |
张华, 张子鹏, 张澜澜, 等.H2O2强化光催化处理苯胺化工废水的应用试验[J].化工进展,2020, 39(12):5299-5308.
|
[94] |
赵健东. 头孢类抗生素生产废水催化湿式氧化处理研究[D]. 镇江:江苏科技大学,2019.
|
[95] |
王赫名, 桂程, 王刚, 等.单室空气阴极微生物燃料电池处理含油废水[J].环境科学与技术,2020, 43(11):148-153.
|
[96] |
LI X H, JIN X D, ZHAO N N, et al.Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system[J].Water Research,2017, 119:67-72.
|
[97] |
张俊杰, 贾金萍, 秦雪梅.质谱技术在中药研究中的应用进展[J].分析测试学报,2017, 36(5):579-587.
|
[98] |
苟玺莹, 张盼月, 钱锋, 等.UV/H2O2降解水中磺胺嘧啶影响因素及机理[J].环境工程学报,2017, 11(11):5810-5819.
|
[99] |
LIU L, LIN S, ZHANG W, et al.Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process[J].Chemical Engineering Journal,2018, 346:515-524.
|
[100] |
李莉, 代勤, 张赛, 等.不同pH下微生物燃料电池降解含硫偶氮染料废水的效能及其机理[J].环境工程学报,2021, 15(1):115-125.
|
[101] |
胡明珠, 孟宪双, 王春, 等.质谱在高通量快速检测技术中的应用研究进展[J].分析测试学报,2018, 37(2):127-138.
|
[102] |
HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al.Nontarget screening with high resolution mass spectrometry in the environment:ready to go?[J].Environmental Science & Technology,2017, 51(20):11505-11512.
|
[103] |
姜鸿兴, 李军, 唐娇, 等.高分辨质谱技术在大气棕色碳研究中的应用[J].分析化学,2018, 46(10):1528-1538.
|
[104] |
TERZIC S, UDIKOVIC-KOLIC N, JURINA T, et al.Biotransformation of macrolide antibiotics using enriched activated sludge culture:kinetics, transformation routes and ecotoxicological evaluation[J].Journal of Hazardous Materials,2018, 349:143-152.
|
[105] |
FRINDT B, MATTUSCH J, REEMTSMA T, et al.Multidimensional monitoring of anaerobic/aerobic azo dye based wastewater treatments by hyphenated UPLC-ICP-MS/ESI-Q-TOF-MS techniques[J].Environmental Science and Pollution Research,2017, 24(12):10929-10938.
|
[106] |
SCHOLLÉE J E, HOLLENDER J, MCARDELL C S.Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment[J].Water Research,2021, 200:117209.
|
[107] |
彭涛, 杨滨, 徐超, 等.量子化学在化学品环境污染研究中的应用[J].环境化学,2020, 39(4):876-890.
|
[108] |
MARDIROSSIAN N, HEAD-GORDON M.Thirty years of density functional theory in computational chemistry:an overview and extensive assessment of 200 density functionals[J].Molecular Physics,2017, 115(19):2315-2372.
|
[109] |
FUKUI K, YONEZAWA T, SHINGU H.A molecular orbital theory of reactivity in aromatic hydrocarbons[J].Journal of Chemical Physics,1952, 20(4):722-725.
|
[110] |
CHENG Z W, YANG B W, CHEN Q C, et al.Characteristics and difference of oxidation and coagulation mechanisms for the removal of organic compounds by quantum parameter analysis[J].Chemical Engineering Journal,2018, 332:351-360.
|
[111] |
CAO T T, XU T F, DENG F X, et al.Reactivity and mechanism between OH and phenolic pollutants:eficiency and DFT calculation[J].Journal of Photochemistry and Photobiology A:Chemistry,2021, 407:113025.
|
[112] |
LI Y Y, YANG Y, LEI J M, et al.The degradation pathways of carbamazepine in advanced oxidation process:a mini review coupled with DFT calculation[J].Science of the Total Environment,2021, 779:146498.
|
[113] |
LI C, ZHENG S S, LI T T, et al.Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways[J].Water Research,2019, 151:468-477.
|
[114] |
FERRERA I, SANCHEZ O.Insights into microbial diversity in wastewater treatment systems:how far have we come?[J].Biotechnology Advances,2016, 34(5):790-802.
|
[115] |
PANDIT P R, KUMAR R, KUMAR D, et al.Deciphering the black box of microbial community of common effluent treatment plant through integrated metagenomics:tackling industrial effluent[J].Journal of Environmental Management,2021, 289:112448.
|
[116] |
MEERBERGEN K, van GEEL M, WAUD M, et al.Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants[J].Microbiologyopen,2017, 6(1):e00413.
|
[117] |
ZHU Y J, WANG Y Y, JIANG X X, et al.Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater[J].Chemical Engineering Journal,2017, 325:300-309.
|
[118] |
MIAO Y, WANG Z, LIAO R H, et al.Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater[J].Chemical Engineering Journal,2017, 330:757-763.
|
[119] |
YA T, DU S, LI Z Y, et al.Successional dynamics of molecular ecological network of anammox microbial communities under elevated salinity[J].Water Research,2021, 188:116540.
|
[120] |
ZHANG B, NING D L, YANG Y F, et al.Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants[J].Water Research,2020, 169:115276.
|
[121] |
GU Y F, WEI Y, XIANG Q J, et al.C:N ratio shaped both taxonomic and functional structure of microbial communities in livestock and poultry breeding wastewater treatment reactor[J].Science of the Total Environment,2019, 651:625-633.
|
[122] |
GRIFFIN J S, WELLS G F.Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly[J].Isme Journal,2017, 11(2):500-511.
|
[123] |
STADLER L B, LOVE N G.Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors[J].Water Research,2016, 104:189-199.
|
[124] |
ZHANG Y, WANG X, HU M, et al.Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor[J].Applied Microbiology and Biotechnology,2015, 99(4):1977-1987.
|
[125] |
MANSFELDT C, ACHERMANN S, MEN Y J, et al.Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities[J].Isme Journal,2019, 13(6):1589-1601.
|
[126] |
XIA Y, WEN X H, ZHANG B, et al.Diversity and assembly patterns of activated sludge microbial communities:a review[J].Biotechnology Advances,2018, 36(4):1038-1047.
|
[127] |
DOTTORINI G, MICHAELSEN T Y, KUCHERYAVSKIY S, et al.Mass-immigration determines the assembly of activated sludge microbial communities[J].Proceedings of the National Academy of Sciences,2021, 118(27):e2021589118.
|
[128] |
LIEBANA R, MODIN O, PERSSON F, et al.Combined deterministic and stochastic processes control microbial succession in replicate granular biofilm reactors[J].Environmental Science & Technology,2019, 53(9):4912-4921.
|
[129] |
JIANG Y, SHI X, NG H Y.Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater:start-up, long-term performances and metabolic function[J].Journal of Hazardous Materials,2021, 412:125229.
|
[130] |
XIONG F Z, ZHAO X X, WEN D H, et al.Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors[J].Science of the Total Environment,2020, 735:139449.
|
[131] |
ZARAMELA L S, MOYNE O, KUMAR M, et al.The sum is greater than the parts:exploiting microbial communities to achieve complex functions[J].Current Opinion in Biotechnology,2021, 67:149-157.
|
[132] |
徐昭勇, 胡海洋, 许平, 等.人工合成微生物组的构建与应用[J].合成生物学,2021, 2(2):181-193.
|
[133] |
陈玲, 翁景霞, 刘苏, 等.工业废水毒性评估与致毒物质鉴别技术进展[J].环境监控与预警,2018, 10(3):1-8.
|
[134] |
朱冰清, 姜晟, 蔡琨, 等.生物监测技术在工业废水监测领域的应用研究[J].中国环境监测,2021, 37(1):1-10.
|
[135] |
NA C H, ZHANG Y, QUAN X, et al.Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A2O) and advanced oxidation process[J].Journal of Hazardous Materials,2017, 338:186-193.
|
[136] |
XIE Y W, CHEN L C, LIU R.AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater[J].Journal of Environmental Sciences,2017, 52:170-177.
|
[137] |
WANG J X, BOVEE T F H, BI Y H, et al.Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays[J].Environmental Science and Pollution Research,2014, 21(4):3145-3155.
|
[138] |
LI J Y, SU L, WEI F H, et al.Bioavailability-based assessment of aryl hydrocarbon receptor-mediated activity in Lake Tai Basin from Eastern China[J].Science of the Total Environment,2016, 544:987-994.
|
[139] |
王宏洋, 赵鑫, 曲超, 等.美国排水综合毒性在有毒污染物排放控制中的应用方法与启示[J].环境工程技术学报,2016, 6(6):636-644.
|
[140] |
SU Z G, DAI T J, TANG Y S, et al.Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area[J].Marine Pollution Bulletin,2018, 131:481-495.
|
[141] |
De MELO E D, MOUNTEER A H, LEAO L H D, et al.Toxicity identification evaluation of cosmetics industry wastewater[J].Journal of Hazardous Materials,2013, 244:329-334.
|
[142] |
BRACK W, AIT-AISSA S, BURGESS R M, et al.Effect-directed analysis supporting monitoring of aquatic environments:an in-depth overview[J].Science of the Total Environment,2016, 544:1073-1118.
|
[143] |
LIU Q, XU X, LIN L, et al.Occurrence, distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants[J].Science of the Total Environment,2021, 789:147911.
|
[144] |
HERNANDO M D, MEZCUA M, FERNANDEZ-ALBA A R, et al.Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J].Talanta,2006, 69(2):334-342.
|
[145] |
LI F F, CHEN L J, CHEN W D, et al.Antibiotics in coastal water and sediments of the East China Sea:distribution, ecological risk assessment and indicators screening[J].Marine Pollution Bulletin,2020, 151:110810.
|