Citation: | WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003 |
[1] |
中华人民共和国国家统计局, 中华人民共和国生态环境部. 北京:中国环境统计年鉴2019[M]. 中国水利水电出版社, 2021.
|
[2] |
中华人民共和国水利部. 中国水利统计年鉴2020[M]. 北京:中国水利水电出版社, 2020.
|
[3] |
中华人民共和国水利部. 2020年中国水资源公报[DB/OL]. http://www.mwr.gov.cn/sj/tjgb/szygb/202107/P020210712355794160191.pdf 2021
-07-13/2021-08-01.
|
[4] |
世界银行. 年度淡水抽取量(占内部资源的百分比)[DB/OL]. https://data.worldbank.org.cn/indicator/ER.H2O.FWTL.ZS?view=chart.
|
[5] |
世界银行. GDP(现价美元)[DB/OL]. https://data.worldbank.org.cn/indicator/NY.GDP.MKTP.CD.
|
[6] |
BELL M L, DAVIS D L. Reassessment of the lethal London fog of 1952:novel indicators of acute and chronic consequences of acute exposure to air pollution[J]. Environmental Health Perspectives, 2001, 109:389-394.
|
[7] |
WHITE W H, ROBERTS P T. On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin[J]. Atmospheric Environment, 1977, 11(9):803-812.
|
[8] |
TONG Y J, CAI J J, ZHANG Q, et al. Life cycle water use and wastewater discharge of steel production based on material-energy-water flows:a case study in China[J]. Journal of Cleaner Production, 2019, 241:118410.
|
[9] |
WEI C, WU H P, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246:324-333.
|
[10] |
CHAN Y J, CHONG M F, LAW C L, et. al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal, 2009, 155(1/2):1-18.
|
[11] |
韦朝海,周红桃,黄晶,等. 污水的内含能及污水处理过程的耗能与节能[J]. 土木与环境工程学报(中英文), 2019, 41(5):151-163.
|
[12] |
韦聪, 李磊, 吕文英, 等. 工业废水CODCr测定方法与技术发展过程分析[J]. 中国测试, 2017, 43(7):1-9.
|
[13] |
MALAJ E, Von Der OHE P C, GROTE M, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:9549-9554.
|
[14] |
HONG H B, WANG L C, SHAO J, et al. A miniature CCA public key encryption scheme based on non-abelian factorization problem in finite groups of lie type[J]. Computer Journal, 2019, 62:1840-1848.
|
[15] |
NYLANDER J A A, RONQUIST F, HUELSENBECK J P, et al. Bayesian phylogenetic analysis of combined data[J]. Systematic Biology, 2004, 53:47-67.
|
[16] |
KURZ S, RAIN O, RJASANOW S. Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems[J]. Computational Mechanics, 2003, 32:423-429.
|
[17] |
MIZRAJI E. Vector logics:the matrix-vector representation of logical calculus[J]. Fuzzy Sets Syst (Netherlands). 1992, 50:179-185.
|
[18] |
赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 2016.
|
[19] |
BORCH T, KRETZSCHMAR R, KAPPLER A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science and Technology, 2010, 44(1):15-23.
|
[20] |
LEVINE D S, HEAD-Gordon M. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(48):12649-12656.
|
[21] |
GRABOWSKI S J. Hydrogen bonds, and sigma-hole and pi-hole bonds-mechanisms protecting doublet and octet electron structures[J]. Physical Chemistry Chemical Physics, 2017, 19:29742-29759.
|
[22] |
BADER R W F, A quantum theory of molecular structure and its applications[J]. Chemical Reviews, 1991, 91:893-928.
|
[23] |
GORHAM E, JANSSENS J A, The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America[J]. Wetlands, 2005, 25:259-278.
|
[24] |
BOCANIOV S A, BARTON D R, SCHIFF S L, et al. Impact of tributary DOM and nutrient inputs on the nearshore ecology of a large, oligotrophic lake (Georgian Bay, Lake Huron, Canada)[J]. Aquatic Sciences, 2013, 75(2):321-332.
|
[25] |
STUTES A L, CEBRIAN J, CORCORAN A A. Effects of nutrient enrichment and shading on sediment primary production and metabolism in eutrophic estuaries[J]. Marine Ecology Progress Series, 2006, 312:29-43.
|
[26] |
SHARMA V K, SOHN M. Aquatic arsenic:toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35:743-759.
|
[27] |
ZHANG C, YU Z G, ZENG G M, et al. Effects of sediment geochemical properties on heavy metal bioavailability[J]. Environmental International, 2014, 73:270-281.
|
[28] |
COSSI M, BARONE V. Time-dependent density functional theory for molecules in liquid solutions[J]. Journal of Chemical Physics, 2001, 115(10):4708-4717.
|
[29] |
FAYER M D. Dynamics of water interacting with interfaces, molecules, and ions[J]. Accounts of Chemical Research, 2012, 45(1):3-14.
|
[30] |
PEARSON R G. Chemical hardness and density functional theory[J]. Journal of Chemical Sciences, 2005, 117:369-377.
|
[31] |
李泽敏,孔巧平,韦朝海. 溶气过程原理、技术特征及其水处理工程应用[J]. 化学工业与工程, 2019, 36(2):1-14.
|
[32] |
HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles[J]. Nature, 2016, 534:241-244.
|
[33] |
黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9):1661-1670.
|
[34] |
KONG Q P, LI Z M, ZHAO Y S, et al. Investigation of the fate of heavy metals based on process regulation-chemical reaction-phase distribution in an A-O1-H-O2 biological coking wastewater treatment system[J]. Journal of Environmental Management, 2019, 247:234-241.
|
[35] |
ZHU S, WU H Z, WU C F, et al. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system[J]. Water Research, 2019, 164:114963.
|
[36] |
WEI C H, LI Z M, PAN J X, et al. An Oxic-Hydrolytic-Oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS EST Water, 2021, 1:1252-1262.
|
[37] |
叶国杰, 王一显, 罗培, 等. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2):1-15.
|
[38] |
WANG J L, XU L J. Advanced oxidation processes for wastewater treatment:formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3):251-325.
|
[39] |
MA J D, WU H Z, WANG Y X, et al. Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification[J]. Bioresource Technology, 2019, 289:121616.
|
[40] |
MA J D, WEI J Y, KONG Q P, et al. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 2021, 280:130726.
|
[41] |
PAN J X, MA J D, WU H Z, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 2019, 150:216-224.
|
[42] |
MAHJOURI M, ISHAK M B, TORABIAN A, et al. The application of a hybrid model for identifying and ranking indicators for assessing the sustainability of wastewater treatment systems[J]. Sustainable Production and Consumption, 2017, 10:21-37.
|
[43] |
PADILLA-Rivera A, & GVERECA L P. A proposal metric for sustainability evaluations of wastewater treatment systems (SEWATS)[J]. Ecological Indicators, 2019, 103:22-33.
|
[44] |
KAMALI M, COSTA M E, AMINABHAVI T M, et al. Sustainability of treatment technologies for industrial biowastes effluents[J]. Chemical Engineering Journal, 2019, 370:1511-1521.
|
[45] |
KAMALI M, PERSSON K M, COSTA M E, et al. Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment:current status and future outlook[J]. Environment International, 2019, 125:261-276.
|
[46] |
KAMALI M, SUHAS D P, COSTA M E, et al. Sustainability considerations in membrane-based technologies for industrial effluents treatment[J]. Chemical Engineering Journal, 2019, 368:474-494.
|
[47] |
QIN Zi, WEI Cong, WEI Tuo, et al. Evolution of biochemical processes in coking wastewater treatment:A combined avaluation of materials and energy efficiences and secondary pollution[J]. Science of The Total Environment, 2021, xx:xxx-xxx.
|
[48] |
武恒平, 韦朝海, 任源, 等. 焦化废水预处理及其特征污染物的变化分析[J]. 化工进展, 2017, 36(10):3911-3920.
|
[49] |
赵雅思, 杨兴舟, 叶国杰, 等. 焦化废水处理过程中固相物质的形成及处置方法评价[J]. 环境科学学报, 2020, 40(7):2548-2556.
|
[50] |
韦朝海, 廖建波, 刘浔, 等. PBDEs的来源特征、环境分布及污染控制[J]. 环境科学学报, 2015, 35(10):1-17.
|
[51] |
ZHAO J L, JIANG Y X, YAN B, et al. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J]. Environmental Toxicology and Chemistry, 2014, 33:1967-1975.
|
[52] |
LU H, HUANG H, YANG W, et al. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification[J]. Water Research, 2018, 133:165-172.
|
[53] |
PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198):812-814.
|
[54] |
PANG Zijun, LUO Pei, WEI Cong, et al. In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater[J]. Chemosphere, 2021, xx:xxx-xxx.
|
[55] |
ZHOU H, WEI C, ZHANG F, et al. A comprehensive evaluation method for sludge pyrolysis and adsorption process in the treatment of coking wastewater[J]. Journal of Environmental Management, 2019, 235:423-431.
|
[56] |
ZHOU H b, WEI C, ZHANG F, et al. Energy-saving optimization of coking wastewater treated by aerobic bio-treatment integrating two-stage activated carbon adsorption[J]. Journal of Cleaner Production, 2018, 175:467-476.
|
[57] |
PENA-Guzman C, ULLOA-Sanchez S, MORA K, et. al. Emerging pollutants in the urban water cycle in Latin America:A review of the current literature[J]. Journal of Environmental Management, 2019, (237):408-423.
|
[58] |
PLAPPALLY A K, LIENHARD J H. Energy requirements for water production, treatment, end use, reclamation, and disposal[J]. Renewable & Sustainable Energy Reviews, 2012, 16(7):4818-4848.
|