Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Si-qi, LI Zhen-yang, LIU Lin, JIANG Run, WANG Xiao-hui. THE SCREENING OF LOW-TEMPERATURE NITRIFYING BACTERIA STAINS AND THEIR IMMOBILIZATION AND DENITRIFICATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 51-58,78. doi: 10.13205/j.hjgc.202112008
Citation: LI Si-qi, LI Zhen-yang, LIU Lin, JIANG Run, WANG Xiao-hui. THE SCREENING OF LOW-TEMPERATURE NITRIFYING BACTERIA STAINS AND THEIR IMMOBILIZATION AND DENITRIFICATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 51-58,78. doi: 10.13205/j.hjgc.202112008

THE SCREENING OF LOW-TEMPERATURE NITRIFYING BACTERIA STAINS AND THEIR IMMOBILIZATION AND DENITRIFICATION PERFORMANCE

doi: 10.13205/j.hjgc.202112008
  • Received Date: 2020-10-03
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • Low-temperature environment is usually inevitable for the sewage biological treatment system, which seriously affects the microbial activity. How to improve the denitrification effect of microorganisms in low-temperature is an urgent problem. In this study, low-temperature nitrifying bacteria BC-15, SL-14 and MI-11, extracted from three different environments all had high nitrogen removal efficiency at 13 ℃, and all of them were identified as Acinetobacter sp. by 16S rDNA. There was no antagonistic reaction among the strains, and the best compound ratio was 1∶1∶1. Compared with sodium alginate-polyvinyl alcohol and sodium alginate-diatomite materials, the results showed that sodium alginate-diatomite materials had stronger immobilization and nitrification ability, and the best ratio of immobilization materials was 1% diatomite, 2% SA, 3% CaCl2 and 6% zeolite. The spheroidization, mass transfer and stability of the immobilized particles were all reliable. After immobilization, the acid and alkali tolerance of the strain was significantly enhanced, and the removal rate of ammonia nitrogen still reached 76.67% after 4 times of reuse, and the nitrification ability and structure were stable. The removal rate of ammonia nitrogen in real domestic sewage by immobilized particles reached 95.86%, showed high nitrification ability, and could raise the possibility for the practical engineering application of low temperature sewage treatment.
  • [1]
    RODRIGUES,FRIGI D,TIEDJE,et al.Coping with our cold planet[J].Applied & Environmental Microbiology,2008,74(6):1677-1686.
    [2]
    陆浩良,田晴,朱艳彬,等.耐低温生物脱氮机制与对策研究进展[J].化工进展,2020,39(1):372-379.
    [3]
    CHEN M,CHEN Y,DONG S,et al.Mixed nitrifying bacteria culture under different temperature dropping strategies:nitrification performance,activity,and community[J].Chemosphere,2018,195:800-809.
    [4]
    DELATOLLA R,TUFENKJI N,COMEAU Y,et al.Effects of long exposure to low temperatures on nitrifying biofilm and biomass in wastewater treatment[J].Water Environment Research,2012,84(4):328-338.
    [5]
    LOTTI T,KLEEREBEZEM R,LOOSDRECHT M C M.Effect of temperature change on anammox activity[J].Biotechnology and Bioengineering,2015,112(1):98-103.
    [6]
    TAYLOR A E,MYROLD D D,BOTTOMLEY P J.Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils[J].Soil Biology and Biochemistry,2019,136:107523.
    [7]
    KINYAGE J P H,PEDERSEN L.Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters[J].Aquacultural Engineering,2016,75:51-55.
    [8]
    ZHOU H X,LI X K,CHU Z R,et al.Effect of temperature downshifts on a bench-scale hybrid A/O system:process performance and microbial community dynamics[J].Chemosphere,2016,153:500-507.
    [9]
    QIN W,LI W G,ZHANG D Y,et al.Ammonium reduction kinetics in drinking water by newly isolated Acinetobacter sp.HITLi 7 at low temperatures[J].Desalination and Water Treatment,2016,57(24):11275-11282.
    [10]
    ZHANG D Y,LI W G,HUANG X F,et al.Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp.strain SFA13[J].Bioresource technology,2013,137:147-152.
    [11]
    赵思琪,任勇翔,杨垒,等.异养硝化复合菌强化处理含氮废水脱氮性能研究[J].工业微生物,2018,48(1):22-29.
    [12]
    SHINTANI M,SUGIYAMA K,SAKURAI T,et al.Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions[J].Journal of Bioscience and Bioengineering,2018,127(2):197-200.
    [13]
    YAN G,YANG R L,ZHANG Z J,et al.Synergy of carbon and nitrogen removal of a co-culture of two aerobic denitrifying bacterial strains,Acinetobacter sp.GA and Pseudomonas sp.GP[J].RSC Advances,2018,8(38):21558-21565.
    [14]
    ZHANG H H,ZHAO Z F,LI S L,et al.Nitrogen removal by mix-cultured aerobic denitrifying bacteria isolated by ultrasound:performance,co-occurrence pattern and wastewater treatment[J].Chemical Engineering Journal,2019,372:26-36.
    [15]
    LIU C C,YU D S,WANG Y Y,et al.A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles:using salinity as a factor[J].Bioresource Technology,2020,302:122864.
    [16]
    MA L L,CHEN N,FENG C P.Practical application potential of microbial-phosphorus minerals-alginate immobilized particles on chromium( Ⅵ)-bioreduction [J].Science of the Total Environment,2020,742:140685.
    [17]
    BOUABIDI Z B,EL-NAAS M H,ZHANG Z.Immobilization of microbial cells for the biotreatment of wastewater:a review[J].Environmental Chemistry Letters,2019,17(1):241-257.
    [18]
    丁一,侯旭光,郭战胜,等.固定化小球藻对海水养殖废水氮磷的处理[J].中国环境科学,2019,39(1):336-342.
    [19]
    WANG P,YUAN Y Z,LI Q,et al.Isolation and immobilization of new aerobic denitrifying bacteria[J].International Biodeterioration & Biodegradation,2013,76:12-17.
    [20]
    AL-ZUHAIR S,EL-NAAS M.Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations[J].Biochemical Engineering Journal,2011,56(1):46-50.
    [21]
    FU X G,ZHANG Q,GAO Y,et al.Degradation potential of petroleum hydrocarbon-degrading bacteria immobilized on different carriers in marine environment[J].Petroleum Science and Technology,2019,37(12):1417-1424.
    [22]
    李思琦,杨静丹,刘琳,等.好氧反硝化菌Achromobacter sp.L16的脱氮特性[J].生物技术通报,2020,36(6):93-101.
    [23]
    杨静丹,祝铭韩,刘琳,等.异养硝化-好氧反硝化菌HY3-2的分离及脱氮特性[J].中国环境科学,2020,40(1):294-304.
    [24]
    国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境出版社,2002.
    [25]
    KWON G,KIM H,SONG C,et al.Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification[J].Biochemical Engineering Journal,2019,152:107385.
    [26]
    MEHETRE G T,DASTAGER S G,DHARNE M S.Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria[J].Science of the Total Environment,2019,679:52-60.
    [27]
    SYAKTI A D,ACQUAVIVA M,GILEWICZ M,et al.Comparison of n-eicosane and phenanthrene removal by pure and mixed cultures of two marine bacteria[J].Environmental Research,2004,96(2):228-234.
    [28]
    KADIMPATI K K,MONDITHOKA K P,BHEEMARAJU S,et al.Entrapment of marine microalga,Isochrysis galbana,for biosorption of Cr(Ⅲ) from aqueous solution:isotherms and spectroscopic characterization[J].Applied Water Science,2013,3(1):85-92.
    [29]
    乔楠,高明星,聂刚,等.改性硅藻土负载异养硝化-好氧反硝化菌对生活污水的处理研究[J].硅酸盐通报,2015,34(11):3090-3094.
    [30]
    WANG B,XU X Y,YAO X W,et al.Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis and Pseudomonas stutzeri bacteria[J].Journal of Environmental Management,2019,249:109388.
    [31]
    DENG F C,LIAO C J,YANG C,et al.Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials[J].International Biodeterioration & Biodegradation,2016,110:46-52.
    [32]
    DONG Y W,ZHANG Y Q,TU B J.Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate[J].Brazilian Journal of Microbiology,2017,48(3):515-521.
    [33]
    郑华楠,宋晴,朱义,等.芦苇生物炭复合载体固定化微生物去除水中氨氮[J].环境工程学报,2019,13(2):310-318.
    [34]
    FU X G,WANG H J,BAI Y,et al.Systematic degradation mechanism and pathways analysis of the immobilized bacteria:permeability and biodegradation,kinetic and molecular simulation[J].Environmental Science and Ecotechnology, 2020, 2: 100028.
  • Relative Articles

    [1]WANG Rui, LI Yongli, ZHANG Hongjiang, GONG Yanzhe, HU Bin, CHEN Xi. ENHANCEMENT OF SO42- REMOVAL BY SODIUM ALGINATE IN LIME SOFTENING PROCESS OF DESULFURIZATION WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 26-33. doi: 10.13205/j.hjgc.202303004
    [2]REN Xiaoyu, LI Yinghua, LI Haibo, DENG Wenhe, NAN Ruibin. TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005
    [3]BAO Yi, SONG Jia-jun, YIN Fang-fang, ZHANG Yuan-ke, TIAN Wen-li, LI Xin-hui, YANG Chen-qi, LIU Wen-ru, SHEN Yao-liang. EFFECTS OF LOW TEMPERATURE ON PARTIAL NITRIFICATION GRANULAR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 32-37,44. doi: 10.13205/j.hjgc.202012006
    [4]LIAO Quan, LUO Hua-yong, RONG Hong-wei, CHEN Bing-wei, LIANG Ying. ADSORPTION PERFORMANCE OF TETRACYCLINE ONTO NANO-ALUMINA MODIFIED GEL BEADS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 36-42. doi: 10.13205/j.hjgc.202009006
    [12]Zhao Xuelian Lou Gaobin Li Zonghui Liu Jie Liu Jinquan Jiang Anping Wang Kai Ren Yanqiang Qu Jiayu, . STUDY ON SEWAGE TREATMENT OF GEL-EMBEDDED NITROBACTERIA CARRIERS AT LOW TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 21-24. doi: 10.13205/j.hjgc.201503005
    [13]Zhang Weizheng Chen Yongchun Liu Bingjun Li Zhenzhen Tao Xianchao Shi Xianyang, . MATHEMATICAL SIMULATION OF SIMULTANEOUS DENITRIFICATION AND METHANOGENESIS WITH SODIUM ACETATE AS THE ELECTRON DONOR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 63-69. doi: 10.13205/j.hjgc.201504014
    [14]Kang Haiyan Yang Zhiguang Huang Xiaonan, . REMOVAL OF HEAVY METALS USING NANOSCALE ZERO-VALENT IRON IMMOBILIZED BY SODIUM ALGINATE/β-CYCLODEXTRIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 144-147. doi: 10.13205/j.hjgc.201506032
    [15]Dai Pengfei, Cai Tianming, Chen Liwei. IMMOBILIZATION,DEGRADATION CHARACTERISTICS AND ENGINEERING APPLICATION OF NICOSULFURON-DEGRADING STRAIN SY-6[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 6-10. doi: 10.13205/j.hjgc.201501002
  • Cited by

    Periodical cited type(7)

    1. 杨旸,侯成,江心白,陈丹,杨浩,牛浩. 微生物封装技术在废水脱氮工艺中的研究进展. 环境科技. 2024(01): 56-61 .
    2. 胡晓聪,吴慧欣,李国祥,邢承华. 海藻酸钠包埋对氨氧化细菌去除景观水体中氨氮的影响分析. 资源节约与环保. 2024(08): 80-84 .
    3. 李昊霖,吴昊,王凌宇,舒达,江敏. 复合载体固定化枯草芽孢杆菌对养殖池塘水质的影响. 大连海洋大学学报. 2024(05): 846-855 .
    4. 李月娜,孙富康,蔡雨衡,梅洪,程凯. 一株耐低温自养氨氧化细菌富集培养物的生物学特征. 环境科学与技术. 2024(12): 1-10 .
    5. 赵紫荆,张玉,周集体. 菌株Acinetobacter sp. Z1低温脱氮除磷性能及氮磷转化途径. 大连理工大学学报. 2023(02): 261-272 .
    6. 慕浩,胡凯耀,朱红娟,彭钰卓,王倩,王亚娥,李杰. 微生物固定化技术及其强化生物脱氮研究进展. 工业水处理. 2023(04): 28-35 .
    7. 苏鑫,王诗涵,刘佩武,周鹏,刘鹰,吴英海,韩蕊. 微生物复合载体制备及包埋Halomonas sp.NH2B的硝化性能. 环境科学与技术. 2023(11): 1-10 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.9 %FULLTEXT: 15.9 %META: 81.1 %META: 81.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 27.0 %其他: 27.0 %China: 0.4 %China: 0.4 %[]: 0.4 %[]: 0.4 %上海: 0.7 %上海: 0.7 %东莞: 1.1 %东莞: 1.1 %临汾: 0.4 %临汾: 0.4 %信阳: 0.4 %信阳: 0.4 %兰州: 1.1 %兰州: 1.1 %北京: 1.5 %北京: 1.5 %南京: 1.5 %南京: 1.5 %南通: 0.4 %南通: 0.4 %台州: 0.7 %台州: 0.7 %吉安: 0.7 %吉安: 0.7 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %大连: 1.1 %大连: 1.1 %天津: 1.1 %天津: 1.1 %太原: 0.4 %太原: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 0.7 %张家口: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %昆明: 1.5 %昆明: 1.5 %晋城: 0.7 %晋城: 0.7 %朝阳: 1.9 %朝阳: 1.9 %杭州: 2.2 %杭州: 2.2 %武汉: 1.1 %武汉: 1.1 %济源: 0.7 %济源: 0.7 %温州: 1.1 %温州: 1.1 %湖州: 0.4 %湖州: 0.4 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 30.4 %芒廷维尤: 30.4 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.4 %苏州: 0.4 %衢州: 0.7 %衢州: 0.7 %西宁: 2.6 %西宁: 2.6 %西安: 0.4 %西安: 0.4 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.6 %运城: 2.6 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.5 %郑州: 1.5 %重庆: 0.7 %重庆: 0.7 %镇江: 0.4 %镇江: 0.4 %长春: 0.7 %长春: 0.7 %长沙: 1.9 %长沙: 1.9 %黄冈: 0.4 %黄冈: 0.4 %黄石: 0.4 %黄石: 0.4 %其他China[]上海东莞临汾信阳兰州北京南京南通台州吉安哈尔滨嘉兴大连天津太原常州常德张家口成都扬州昆明晋城朝阳杭州武汉济源温州湖州漯河石家庄芒廷维尤芝加哥苏州衢州西宁西安西雅图贵阳运城遵义邯郸郑州重庆镇江长春长沙黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (218) PDF downloads(8) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return