Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
Citation: JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029

OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION

doi: 10.13205/j.hjgc.202201029
  • Received Date: 2021-01-21
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • Realizing the automatic classification of domestic waste is an effective way to solve the increasing problems on municipal solid waste(MSW). The thesis focused on the researches on waste image recognition based on computer vision in the past ten years. According to the differences of automatic waste classification methods, the current existing related research was divided into traditional machine learning methods and deep learning methods. It illustrated the machine learning method and the feature extraction method of the deep learning method, compared and analyzed the advantages and disadvantages of the traditional machine learning method and the waste type recognition based on the deep learning method, focused on the application research of the general neural network of the deep learning method. In addition, the data sets used in the current research on waste image recognition were introduced, and the problem of current waste image recognition were analyzed and prospected finally.
  • [1]
    KAZA S,YAO L,BHADA P,et al.What a waste 2.0:a global snapshot of solid waste management to 2050[M].Washing:World Bank Publiction,2018:295.
    [2]
    吉贵祥,顾杰,郭敏,等.生活垃圾焚烧二噁英排放对人群健康影响研究进展[J].环境监控与预警,2020,12(5):75-81.
    [3]
    SALMADOR A,CID J P,NOVELLE I R.Intelligent garbage classifier[J].International Journal of Interactive Multimedia and Artificial Intelligence,2008,1(1):31-36.
    [4]
    OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Men,and Cybernetics,1979,9(1):62-66.
    [5]
    BEUCHER S,LANTUEJOUL C.Use of watersheds in contour detection[C]//International workshop on image processing:real-time edge motion detection/estimation,RENNES,France,1979:1-12.
    [6]
    RUIZ V,SANCHEZ Á,VELEZ J F,et al.Automatic image-based waste classification[C]//Lecture Notes in Computer Science (IWINAC 2019),Barcelona Spain,2019:422-431.
    [7]
    HU M K.Visual pattern recognition by moment invariants[J].Information Theory,1962,8(2):179-187.
    [8]
    黄浩然.基于Hu不变矩的垃圾分类和识别[J].自动化应用,2020(8):74-76.
    [9]
    MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Processing of the fifth Berkeley Symposium on Mathematical Statistics & Probability,Oakland,CA,USA.1967:281-297.
    [10]
    SKAR G E,MOKBEL M,DARWICH A,KHNEISSER M N,HADI A.Comparing deep learning and support vector machines for autonomous waste sorting[C]//2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET),Beirut,Lebanon.IEEE,2016:207-212.
    [11]
    YANG M,THUNG G.Classification of TrashNet for recyclability status[J].CS229 Project Report,2016,2016.
    [12]
    SALIMI I,DEWANTRAR B S B,WIBOWO I K.Visual-based trash detection and classification system for smart trash bin robot[C]//2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC),Bali,Indonesia,2018.2019:378-383.
    [13]
    CARLOS B L,ALEJANDRO R,MANUEL E.Automatic waste classification using computer vision as an application in Colombian High School[C]//6th Latin-American Conference on Network and Electronic Media (LACNEM 2015),Medellin,Colombia,2015.
    [14]
    MAIR E,HAGER G D,SUPPA M,et al.Adaptive and generic corner detection based on the accelerated segment test[C]//Proceeding of the 11th European Conference on Computer Vision:Part Ⅱ (Computer Vision-ECCV 2010),Berlin Heidelberg,2010,2010:183-196.
    [15]
    申新杰,兰浩,曾渝.基于AGAST角点域特征特征的垃圾识别算法[J].电脑知识与技术,2020,16(20):183-186.
    [16]
    谈笑.基于BP神经网络的医疗废物识别与分类研究[J].电子设计工程,2019,27(24):6-10.
    [17]
    黄兴华,叶军一,熊杰.基于纹理特征融合的道路垃圾图像识别及提取[J].计算机工程与设计,2019,40(11):3212-3218

    ,3305.
    [18]
    KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25(2):1-9.
    [19]
    NAIR V,HINTON G E.Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010),2010.
    [20]
    HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223.
    [21]
    CHU Y H,HUANG C,XIE X D,et al.Multilayer hybrid deep-learning method for waste classification and recycling[J].Computational Intelligence and Neuroence,2018:1-9.
    [22]
    SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2014.
    [23]
    KNOWLES J,KENNEDY S,KENNEDY T.OscarNet:using transfer learning to classify disposable waste[R].2018:1-5.
    [24]
    SRINILTA C,KANHARATTANACHAI S.Municipal solid waste segregation with CNN[J].International Conference on Engineering,Applied Sciences and Technology (ICEAST),Luang Prabang,2019.
    [25]
    SEZGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015:1-9.
    [26]
    陈非予,杨婷婷,蒋铭阳.基于深度学习技术的生活垃圾分类模型审计[J].电子元器件与信息技术,2020,4(7):94-96.
    [27]
    HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition,2016.
    [28]
    ADEDEJI O,WANG Z H.Intelligent waste classification system using deep learning convolutional neural network[J].Procedia Manufacturing,2019,35:607-612.
    [29]
    董子源,韩卫光.基于卷积神经网络的垃圾图像分类算法[J].计算机系统应用,2020,29(8):199-204.
    [30]
    XIE S N,GIRSHICK R,PIOTR D,et al.Aggregated Residual Transformations for Deep Neural Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017:5987-5995.
    [31]
    余东,敬超.基于神经网络的智能垃圾分类软件设计与实现[J].科学技术创新,2020(26):120-122.
    [32]
    ANH H V,LE H S,et al.A novel framework for trash classification using deep transfer learning[C]//Special Section on Data Mining for Internet of Things.IEEE Access,2019:178632-178639.
    [33]
    HUANG G,LIU Z,LAURENS V D M,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CPVR),2017:2261-2269.
    [34]
    RAHMI A A,KESKIN S R,KAYA M,et al.Classification of TrashNet dataset based on deep learning models[C]//2018 IEEE International Conference on Big Data,2018:2058-2062.
    [35]
    ZENG M,LU W K,XU W K,et al.PublicGarbageNet:a deep learning framework for public garbage classification[C]//Proceedings of the 39th Chinese Control Conference,Shengyang,China,2020:7200-7205.
    [36]
    CENK B,MELTEM A,FUAT B,et al.RecycleNet:intelligent waste sorting using deep neural networks[C]//2018 IEEE International Conference on Intelligent Systems and Application (INISTA),Thessaloniki,Greece.IEEE,2018.
    [37]
    HOWARD A G,ZHU M L,CHEN B,et al.MobileNet:efficient convolution neural networks for mobile vision applications[J].2017.
    [38]
    梅书枰.基于MobileNetV3公共垃圾分类系统[D].武汉:武汉纺织大学,2020.
    [39]
    VIOLA.Robust real-time object detection[J].International Journal of Computer Vision,2001,57(2):87.
    [40]
    HUANG S C,CHEN B H.Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems[J].IEEE Transactions on Neural Networks & Learning Systems,2013,24(12):1920-1931.
    [41]
    SELIM B,HESAM N,MATTHIAS G,et al.Real-time object detection and tracking for industrial application[J].2008.
    [42]
    MUTHUKKUMARASAMY V,BLUMENSTIN M M,et al.Intelligent illicit object detection system for enhanced aviation security[J].Cancer ENCE,2004,103(7):1177-1181.
    [43]
    REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [44]
    AWE O,MENGISTU R,SREEDHAR V.Final report:smart trash net:waste localization and classification[J].2017:1-6.
    [45]
    马雯,于炯,王潇,等.基于改进Faster R-CNN的垃圾检测和分类[J].计算机工程,2020:1-8.
    [46]
    SERMANET P,EIGEN D,ZHANG X,et al.OverFeat:integrated recognition,localization and detection using convolutional networks[J].Eprint Arxiv,2013.
    [47]
    MOHAMMAD S R,ANDREAS V K,ANDRE D,et al.A computer vision system to localize and classify wastes on the streets[M]//Computer Vision System (ICVS2017),Springer,Cham,2017:195-204.
    [48]
    RUSSELL R,ANDRILUKA M,NG A Y.End-to-end people detection in crowded scenes[J].Computer Science,2016.
    [49]
    REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:779-788.
    [50]
    王铭杰.基于YOLO V3的垃圾自动定位及分类方法[J].无线互联科技,2019,16(20):110-112.
    [51]
    LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[M]//Computer Vision-ECCV 2016(ECCV 2016),Springer,Cham,2016:21-37.
    [52]
    彭昕昀,李嘉乐,李婉,等.基于SSD算法的垃圾识别分类研究[J].韶关学院院报(自然科学),2019,40(6):15-20.
  • Relative Articles

    [1]ZHOU Lei, LI Yalan, ZHANG Chaoqun, SONG Wen, YANG Kun, DU Mingyi, CHEN Qiang, LIU Yang. RESEARCH PROGRESS ON MONITORING AND SIMULATION OF SPATIAL DISTRIBUTION, VOLUME AND VARIATION OF CONSTRUCTION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 243-253. doi: 10.13205/j.hjgc.202403030
    [2]ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
    [3]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [4]LIU Zhi, GAO Dongming. APPLICATION AND COMPARISON OF DIFFERENT DEEP LEARNING MODELS IN RECOGNITION OF FOOD WASTE TYPES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 254-260. doi: 10.13205/j.hjgc.202403031
    [5]ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
    [6]PEI Lifeng, CHEN Weijie, XU Jingsheng, LÜ Lu. MODEL PREDICTIVE CONTROL FOR ACCURATE DOSING IN WASTEWATER TREATMENT PLANTS BASED ON SELF-ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 84-92,140. doi: 10.13205/j.hjgc.202311015
    [7]YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029
    [8]SUN Bingyang, YANG Shunsheng, CHEN Peng, ZHANG Dawen. DEVELOPMENT OF A PORTABLE WATER QUALITY DETECTION SYSTEM BASED ON ZYNQ IMAGE PROCESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 175-183,234. doi: 10.13205/j.hjgc.202307024
    [9]ZHANG Tengyuan, FENG Junxiao, FENG Long. SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 113-119. doi: 10.13205/j.hjgc.202202018
    [10]HUANG Yanpeng, WANG Yuanhao, WANG Chao, LIU Weijiang, WANG Hong, LV Guangfeng, LIN Sijie, HU Qing. CHARACTERISTICS ANALYSIS AND ZONING CONTROL OF GROUNDWATER POLLUTION BASED ON SELF-ORGANIZING MAPS AND K-MEANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 31-41,47. doi: 10.13205/j.hjgc.202206004
    [11]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [12]SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017
    [13]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [16]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(6)

    1. 张亮,杨博文,刘宇衡,张雨,高瑜,李佳诚,李俊辰,林斯杰. 基于机器视觉的生化池监测技术. 环境工程. 2025(03): 1-10 . 本站查看
    2. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较. 环境工程. 2024(03): 254-260 . 本站查看
    3. 冯丁,刘晶静,马文丹,刘玉学,杨尘,张萌萌. 基于机器学习的生物炭吸附重金属建模研究进展. 工业水处理. 2024(12): 1-11 .
    4. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    5. 李长江,余海涛,李官星,李玥洋,谭雯文. 基于SqueezeNet-Tiny的可回收垃圾智能垃圾桶设计及实现. 现代信息科技. 2022(17): 75-77 .
    6. 亢红波,蔡学瑞,杨亮,周倩倩. 一种智能垃圾分类装置设计. 西安邮电大学学报. 2022(05): 60-66 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 88.4 %META: 88.4 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.4 %其他: 14.4 %其他: 0.3 %其他: 0.3 %Canton: 0.5 %Canton: 0.5 %China: 0.3 %China: 0.3 %Nahant: 0.3 %Nahant: 0.3 %[]: 0.3 %[]: 0.3 %上海: 3.5 %上海: 3.5 %东莞: 5.8 %东莞: 5.8 %临汾: 0.3 %临汾: 0.3 %丹东: 0.3 %丹东: 0.3 %云浮: 0.3 %云浮: 0.3 %佛山: 0.5 %佛山: 0.5 %保定: 0.3 %保定: 0.3 %信阳: 0.3 %信阳: 0.3 %凤凰城: 0.3 %凤凰城: 0.3 %北京: 4.8 %北京: 4.8 %北海: 0.8 %北海: 0.8 %十堰: 0.3 %十堰: 0.3 %南京: 1.8 %南京: 1.8 %南宁: 0.3 %南宁: 0.3 %南昌: 0.8 %南昌: 0.8 %台州: 1.3 %台州: 1.3 %史蒂文斯波因特: 0.5 %史蒂文斯波因特: 0.5 %合肥: 0.8 %合肥: 0.8 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.5 %唐山: 0.5 %商丘: 0.5 %商丘: 0.5 %喀什: 0.3 %喀什: 0.3 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 0.5 %天津: 0.5 %太原: 0.3 %太原: 0.3 %安康: 0.5 %安康: 0.5 %宣城: 0.5 %宣城: 0.5 %宿州: 0.3 %宿州: 0.3 %密蘇里城: 0.5 %密蘇里城: 0.5 %常州: 0.5 %常州: 0.5 %常德: 0.3 %常德: 0.3 %广州: 1.3 %广州: 1.3 %开封: 0.8 %开封: 0.8 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.5 %张家口: 0.5 %德阳: 0.3 %德阳: 0.3 %成都: 1.8 %成都: 1.8 %扬州: 0.8 %扬州: 0.8 %旧金山: 0.5 %旧金山: 0.5 %昆明: 1.8 %昆明: 1.8 %晋中: 1.5 %晋中: 1.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.8 %杭州: 3.8 %桂林: 0.3 %桂林: 0.3 %榆林: 0.3 %榆林: 0.3 %武威: 0.3 %武威: 0.3 %武汉: 0.8 %武汉: 0.8 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 2.8 %洛阳: 2.8 %济源: 0.5 %济源: 0.5 %淮北: 0.5 %淮北: 0.5 %温州: 0.8 %温州: 0.8 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %潍坊: 0.3 %潍坊: 0.3 %石家庄: 0.8 %石家庄: 0.8 %秦皇岛: 0.3 %秦皇岛: 0.3 %绍兴: 0.3 %绍兴: 0.3 %聊城: 0.3 %聊城: 0.3 %肇庆: 0.8 %肇庆: 0.8 %芒廷维尤: 12.1 %芒廷维尤: 12.1 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 1.8 %芝加哥: 1.8 %苏州: 0.5 %苏州: 0.5 %营口: 0.3 %营口: 0.3 %衡水: 0.3 %衡水: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 4.3 %西宁: 4.3 %西安: 2.0 %西安: 2.0 %贵阳: 0.5 %贵阳: 0.5 %赣州: 0.3 %赣州: 0.3 %运城: 2.0 %运城: 2.0 %通辽: 0.3 %通辽: 0.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.5 %郑州: 1.5 %重庆: 1.0 %重庆: 1.0 %镇江: 0.8 %镇江: 0.8 %长春: 0.5 %长春: 0.5 %长沙: 0.5 %长沙: 0.5 %门尼菲: 0.5 %门尼菲: 0.5 %防城港: 0.3 %防城港: 0.3 %青岛: 0.5 %青岛: 0.5 %其他其他CantonChinaNahant[]上海东莞临汾丹东云浮佛山保定信阳凤凰城北京北海十堰南京南宁南昌台州史蒂文斯波因特合肥哈尔滨唐山商丘喀什嘉兴天津太原安康宣城宿州密蘇里城常州常德广州开封弗吉张家口德阳成都扬州旧金山昆明晋中晋城朝阳杭州桂林榆林武威武汉沈阳洛阳济源淮北温州湖州漯河潍坊石家庄秦皇岛绍兴聊城肇庆芒廷维尤芜湖芝加哥苏州营口衡水衢州西宁西安贵阳赣州运城通辽遵义邯郸郑州重庆镇江长春长沙门尼菲防城港青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (349) PDF downloads(16) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return