Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 40 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
LAI Jianhua, TANG Changyuan, CAO Yingjie, LIU Guangli, ZHONG Chicheng. COMPREHENSIVE EVALUATION OF GROUNDWATER RESOURCES IN TYPICAL GRANITE ISLANDS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 59-65,198. doi: 10.13205/j.hjgc.202202010
Citation: LAI Jianhua, TANG Changyuan, CAO Yingjie, LIU Guangli, ZHONG Chicheng. COMPREHENSIVE EVALUATION OF GROUNDWATER RESOURCES IN TYPICAL GRANITE ISLANDS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 59-65,198. doi: 10.13205/j.hjgc.202202010

COMPREHENSIVE EVALUATION OF GROUNDWATER RESOURCES IN TYPICAL GRANITE ISLANDS IN SOUTH CHINA

doi: 10.13205/j.hjgc.202202010
  • Received Date: 2021-04-12
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • The contradiction between the supply and demand of water resources of the islands has become increasingly prominent. This study comprehensively used geophysical prospecting, hydrogeological drilling and isotopes tracing analysis to evaluate the storability and reproducibility of groundwater resources in the Tuichuanwan reservoir area of Wanshan Island, Zhuhai, in Guangdong Province. The hydrogeological structure of the Tuichuanwan reservoir area were revealed by the methods of high-density resistivity and the hydrogeological drillings, and we found that the loose sediment aquifer was spatially discontinuous, which together with the fractured aquifer, constituted the main groundwater aquifer in the area. And the bedrock layer constituted the water-proof floor. The permeability coefficient of the loose sedimentary aquifer was 8.30×10-3 cm/s and the specific yield was 0.32; the permeability coefficient of the fractured aquifer was 2.52×10-5 cm/s and the specific yield was 0.10. The groundwater storage capacity of the aquifer was approximately 14,873 m3, indicating a large water storage space. Precipitation was found to be the main source of groundwater using isotopes tracing. The recharge was determined to be 145,065 m3/a through runoff segmentation, and the renewal cycle of groundwater was about 37 d, indicating that the groundwater in the reservoir was reproducible and had an excellent recharge condition. This paper could provide technical ideas and references for exploration and management of groundwater resources in granite islands.
  • loading
  • [1]
    宋代旺,刘玮,邱冠华,等.中国海岛水资源和海水淡化技术[J].海洋开发与管理,2016,33(增刊2):28-33.
    [2]
    张秀芝,王静,郝建安,等.海岛海水资源利用模式[J].水资源保护,2015,31(3):115-118.
    [3]
    徐翔宇,李云玲,郦建强,等.海岛水资源开发利用和保护研究[J].中国水利,2020(23):44-46.
    [4]
    张元禧,施鑫源.地下水水文学[M].北京:中国水利水电出版社,1998.
    [5]
    CHOUDHURY K,SAHA D K,CHAKRABORTY P.Geophysical study for saline water intrusion in a coastal alluvial terrain[J].Journal of Applied Geophysics,2001,46(3):189-200.
    [6]
    El-ASKARY H,El-SAYED H M,FATTAH T A,et al.Environmental investigation on Lake Maryut,west of Alexandria,Egypt:geochemical,geophysical and remote sensing studies[J].2010.
    [7]
    El-WAHEIDI M M,MERLANTI F,PAVAN M.Geoelectrical resistivity survey of the central part of Azraq basin (Jordan) for identifying saltwater/freshwater interface[J].Journal of Applied Geophysics,1992,29(2):125-133.
    [8]
    FROHLICH R K,URISH D W.The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site[J].Journal of Applied Geophysics,2002,50(3):261-278.
    [9]
    KALINSHI R J,KELLY W E,BOGARDI I.Combined use of geoelectric sounding and profiling to quantify aquifer protection properties[J].Ground Water,2010,31(4).
    [10]
    MOHAMADEN M I I,HAMOUDA A Z,MANSOUR S.Application of electrical resistivity method for groundwater exploration at the Moghra area,Western Desert,Egypt[J].Egyptian Journal of Aquatic Research,2016,42(3):261-268.
    [11]
    MOHAMADEN M I I,WAHABALLA A,EL-SAYED H M.Application of electrical resistivity prospecting in waste water management:a case study (Kharga Oasis,Egypt)[J].The Egyptian Journal of Aquatic Research,2016,42(1):33-39.
    [12]
    MOHAMADEN M I I,EHAB D,MOHAMADEN M I I,et al.Application of electrical resistivity for groundwater exploration in Wadi Rahaba,Shalateen,Egypt[J].NRIAG Journal of Astronomy and Geophysics,2017,6(1):201-209.
    [13]
    MOHAMADEN M I.Geoelectrical survey for groundwater exploration at the asyuit governorate,nile valley,egypt[J].Marine Scienes,2009,20(1):91-108.
    [14]
    REYNOLDS J M.An introduction to applied and environmental geophysics[J].Earth Surf.process.landforms-249 & Wetland Piping Reynolds Jm,1997.
    [15]
    TRONICKE J,BLINDOW N,GROß R,et al.Joint application of surface electrical resistivity- and GPR-measurements for groundwater exploration on the island of Spiekeroog—northern Germany[J].Journal of Hydrology,1999,223(1/2):44-53.
    [16]
    任妹娟,曹福祥.高密度电阻率法在红层区地下水勘查中的应用[J].中国西部科技,2009,8(5):51-53.
    [17]
    PUTTIWONGRAK A,TESFALDET Y T.Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in thepkasattri watershed on phuket island,thailand[J].2019.
    [18]
    崔震,陈广泉,徐兴永,等.北长山岛海水入侵成因机理及现状评价[J].海洋环境科学,2015,34(6):930-936.
    [19]
    张宇.基于高密度电法监测海水入侵的综合研究[D].北京:中国地质大学(北京),2019.
    [20]
    史箫笛,黄勋,康小兵,等.高密度电法在覆盖型岩溶地区探测中的应用[J].人民长江,2018,49(增刊2):117-120.
    [21]
    邬健强,赵茹玥,甘伏平,等.综合电法在岩溶山区地下水勘探中的应用:以湖南怀化长塘村为例[J].物探与化探,2020,44(1):93-98.
    [22]
    杨湘生.高密度电法在湘西北岩溶石山区找水中的应用[J].湖南地质,2001(3):230-232.
    [23]
    郑智杰,曾洁,赵伟,等.高密度电法在岩溶区找水中的应用研究[J].地球物理学进展,2019,34(3):1262-1267.
    [24]
    吴敏.高密度电法二维反演在海岛找水中的应用效果分析[J].能源环境保护,2018,32(1):35-37.
    [25]
    杨玉蕊,张义平,缪玉松,等.高密度电法中勘探线长度与测深关系浅析[J].中国煤炭地质,2012,24(6):63-67.
    [26]
    张胄.岱海流域地下水与地表水关系研究[D].石家庄:河北地质大学,2020.
    [27]
    朱金峰,刘悦忆,章树安,等.地表水与地下水相互作用研究进展[J].中国环境科学,2017,37(8):3002-3010.
    [28]
    包为民,胡海英,瞿思敏,等.稳定同位素方法在湖泊水量平衡研究中的应用[J].人民黄河,2007,29(8):29-30.
    [29]
    陈宗宇,万力,聂振龙,等.利用稳定同位素识别黑河流域地下水的补给来源[J].水文地质工程地质,2006,33(6):9-14.
    [30]
    史超.同位素混合单元模型在黄河下游悬河段(河南段)浅层地下水循环研究中的应用[D].长春:吉林大学,2009.
    [31]
    时彦芳,李波.综合电法在花岗岩地区找水中的应用效果分析[J].地质与资源,2020,29(4):363-368.
    [32]
    王晓龙,王鑫,周博武.高密度电法在花岗岩地区找水的应用[J].陕西水利,2020(12):4-6.
    [33]
    珠海市地方志办公室.【海岛】大万山岛[EB/OL].[2019-08-19].http://www.gd-info.gov.cn/shtml/zh/lanmu01/lmzh/lanmu102/2017/06/07/208167.shtml.
    [34]
    于蕾.珠海市大万山岛渔民转产转业问题研究[D].广州:华南理工大学,2012.
    [35]
    吴舒天.基于方格网法对区域性地质灾害评估方法研究:以珠海市万山岛评估为例[J].西部探矿工程,2016,28(5):181-185.
    [36]
    曹登刚.高密度电阻率法在水利水电工程勘查中的应用探析[J].低碳世界,2020,10(8):83-84.
    [37]
    黄金廷,尹立河,王晓勇,等.包气带垂向渗透系数的原位试验研究[J].水资源与水工程学报,2013,24(5):33-35.
    [38]
    王大纯.水文地质学基础[M].北京:地质出版社,1995.
    [39]
    中国地质调查局.水文地质手册[M].2版.北京:地质出版社,2012.
    [40]
    刘春华.水文地质与电测找水技术[M].郑州:黄河水利出版社,2008.
    [41]
    宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007,37(1):11-21.
    [42]
    宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J].中国科学(D辑:地球科学),2007(1):102-110.
    [43]
    宋献方,刘鑫,夏军,等.基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J].应用基础与工程科学学报,2009,17(1):8-20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (254) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return