Citation: | CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032 |
[1] |
苗竹,任贝,吕正勇,等.工业污染场地修复现状[J].资源节约与环保, 2020(3):21-22.
|
[2] |
AYDIN G A, AGAOGLU B, KOCASOY G, et al. Effect of temperature on cosolvent flooding for the enhanced solubilization and mobilization of NAPLs in porous media[J]. Journal of Hazardous Materials, 2011,186(1):636-644.
|
[3] |
朱辉,叶淑君,吴吉春.中国典型有机污染场地土层岩性和污染物特征分析[J].地学前缘, 2021,28(5):26-34.
|
[4] |
廖晓勇,崇忠义,阎秀兰,等.城市工业污染场地:中国环境修复领域的新课题[J].环境科学, 2011,32(3):784-794.
|
[5] |
刘惠.污染土壤热脱附技术的应用与发展趋势[J].环境与可持续发展, 2019,44(4):144-148.
|
[6] |
康绍果,李书鹏,范云.污染地块原位加热处理技术研究现状与发展趋势[J].化工进展, 2017,36(7):2621-2631.
|
[7] |
DING D, SONG X, WEI C L, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019,253:449-463.
|
[8] |
吴嘉茵,方战强,薛成杰,等.我国有机物污染场地土壤修复技术的专利计量分析[J].环境工程学报, 2019,13(8):2015-2024.
|
[9] |
KINGSTON J L T, DAHLEN P R, JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Ground Water Monitoring and Remediation, 2010,30(4):64-72.
|
[10] |
WOLF J W, BARTON T, GOMES T, et al. Electrical resistance heating:rapid treatment for soil and groundwater remediation[J]. Águas Subterrâneas (São Paulo, Brazil), 2009,1.
|
[11] |
HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas:technology advances and a review of the market from 1988-2020[J]. Ground Water Monitoring&Remediation, 2021,41(1):17-31.
|
[12] |
THOMAS P, GREGORY S, JOSEPH S, et al. New advancements for in situ treatment using electrical resistance heating[J]. Remediation Journal, 2007,17(2):51-70.
|
[13] |
STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation:lessons learned[J]. Environmental Science&Technology, 2012,46(12):6438-6447.
|
[14] |
韩伟,叶渊,焦文涛,等.污染场地修复中原位热脱附技术与其他相关技术耦合联用的意义、效果及展望[J].环境工程学报, 2019,13(10):2302-2310.
|
[15] |
BEYKE G, FLEMING D. In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2005,15(3):5-22.
|
[16] |
王殿二,陈春红,李超,等.有机污染土壤原位热脱附及尾气处理研究进展[J].现代化工, 2020,40(10):55-59.
|
[17] |
COSTANZA J, MARCET T, CÁPIRO N L, et al. Tetrachloroethene release and degradation during combined ERH and sodium persulfate oxidation[J]. Ground Water Monitoring&Remediation, 2017,37(4):43-50.
|
[18] |
CHEN F, FREEDMAN D L, FALTA R W, et al. Henry's law constants of chlorinated solvents at elevated temperatures[J]. Chemosphere, 2012,86(2):156-165.
|
[19] |
SCHWARDT A, DAHMKE A, KÖBER R. Henry's law constants of volatile organic compounds between 0 and 95℃-Data compilation and complementation in context of urban temperature increases of the subsurface[J]. Chemosphere, 2021,272:129858.
|
[20] |
KNAUSS K G, DIBLEY M J, LEIF R N, et al. The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature[J]. Applied Geochemistry, 2000,15(4):501-512.
|
[21] |
SLEEP B E, MA Y. Thermal variation of organic fluid properties and impact on thermal remediation feasibility[J]. Journal of Soil Contamination,1997,6(3):281-306.
|
[22] |
N KOPROCH, DAHMKE A, KBER R. The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70℃[J]. Chemosphere, 2018.
|
[23] |
IMHOFF P T, FRIZZELL A, MILLER C T. Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous media[J]. Environmental Science&Technology, 1997,31(6):1615-1622.
|
[24] |
KROL M M, SLEEP B E, JOHNSON R L. Impact of low-temperature electrical resistance heating on subsurface flow and transport[J]. Water Resources Research, 2011,47(5).
|
[25] |
SEETON C J. Viscosity-temperature correlation for liquids[J]. Tribology Letters, 2006,22(1):67-78.
|
[26] |
MUNHOLLAND J L, MUMFORD K G, KUEPER B H. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating[J]. Journal of Contaminant Hydrology, 2016,184:14-24.
|
[27] |
MUNHOLLAND J L. Electrical resistance heating of groundwater impacted by chlorinated solvents in heterogeneous sand[Z]. ProQuest Dissertations Publishing, 2015.
|
[28] |
ZHAO C, MUMFORD K G, KUEPER B H. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment[J]. Journal of Contaminant Hydrology, 2014,164:49-58.
|
[29] |
MARK K, GREGORY L B. Electrical resistance heating of volatile organic compounds in Sedimentary rock[J]. Remediation Journal, 2010,20(4):69-82.
|
[30] |
HOFMANN H. DECHEMa chemistry data series Vol. Ⅰ, vapor-liquid equilibrium data collection. J. gmehling and U. onken, Part Ⅰ, aqueous-organic systems[J]. Chemical Engineering Science, 1978,33(9):1301.
|
[31] |
HEGELE P R, MUMFORD K G. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene[J]. Journal of Contaminant Hydrology, 2014,165:24-36.
|
[32] |
LIU X L, TAN T W, FALTA R W, et al. Experimental method for characterizing CVOC removal from fractured clays during boiling[J]. Journal of Contaminant Hydrology,2013,152:44-59.
|
[33] |
MARTIN E J, MUMFORD K G, KUEPER B H, et al. Gas formation in sand and clay during electrical resistance heating[J]. International Journal of Heat and Mass Transfer, 2017,110:855-862.
|
[34] |
HERON G, van ZUTPHEN M, CHRISTENSEN T H, et al. Soil heating for enhanced remediation of chlorinated solvents:a laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene[J]. Environmental Science&Technology, 1998,32(10):1474-1481.
|
[35] |
HEINE K S, STECKLER D J. Augmenting in-situ remediation by soil vapor extraction with six-phase soil heating[J]. Remediation (New York, N.Y.), 1999,9(2):65-72.
|
[36] |
BADIN A, BROHOLM M M, JACOBSEN C S, et al. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools[J]. Journal of Contaminant Hydrology, 2016,192:1-19.
|
[37] |
DANNER K M, AGRAWAL A, MCPHERSON A, et al. Abiotic reduction of halogenated aliphatic hydrocarbons by stabilized bimetallic nickel-zerovalent iron (Ni-nZVI) nanoparticles[J]. Abstracts of Papers of the American Chemical Society, 2012,243.
|
[38] |
FRIIS A K, HERON G, ALBRECHTSEN H J, et al. Anaerobic dechlorination and redox activities after full-scale Electrical Resistance Heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006,88(3/4):219-234.
|
[39] |
TRUEX M, POWELL T, LYNCH K, et al. In situ dechlorination of TCE during aquifer heating[J]. Ground Water Monitoring&Remediation, 2007,27(2):96-105.
|
[40] |
MURRAY A M, OTTOSEN C B, MAILLARD J, et al. Chlorinated ethene plume evolution after source thermal remediation:determination of degradation rates and mechanisms[J]. Journal of Contaminant Hydrology, 2019,227:103551.
|
[41] |
LI B R, LIAO P, XIE L, et al. Reduced NOM triggered rapid Cr (Ⅵ) reduction and formation of NOM-Cr (Ⅲ) colloids in anoxic environments[J]. Water Research, 2020,181:115923.
|
[42] |
CHEN Y M, CHEN H L, THRING R W, et al. Immobilization of chromium contaminated soil by Co-pyrolysis with rice straw[J]. Water, Air, and Soil Pollution, 2020,231(5):200.
|
[43] |
ZHOU J J, MA H R, GAO M, et al. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge[J]. Environmental Science and Pollution Res Intearch, 2018,25(3):2495-2505.
|
[44] |
HAN Z Y, JIAO W J, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating:removal efficiency and alteration of soil properties[J]. Chemosphere, 2020,239:124496.
|
[45] |
葛松,孟宪荣,许伟,等.原位电阻热脱附土壤升温机制及影响因素[J].环境科学, 2020,41(8):3822-3828.
|
[46] |
田垚,杨永刚,韩自玉,等.电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J].环境工程学报, 2019,13(10):2336-2346.
|
[47] |
CAI J C, WEI W, HU X Y, et al. Electrical conductivity models in saturated porous media:a review[J]. Earth-Science Reviews, 2017,171:419-433.
|
[48] |
ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Trans. AIME, 1942,146(1):54-62.
|
[49] |
ARPS J. The effect of temperature on the density and electrical resistivity of sodium chloride solutions[J]. Journal of Petroleum Technology, 1953,5(10):17-20.
|
[50] |
陈太聪,张辉,孙从军,等.土壤电阻率影响因素分析及NAPLs污染土壤电阻率特征初探[J].绿色科技, 2016(8):69-72.
|
[51] |
张辉,陈太聪. NAPLs污染土壤电阻率影响因素研究[J].工业安全与环保, 2017,43(2):5-10.
|
[52] |
刘伟,汪华安,尚浩冉,等.有机污染场地原位电法热脱附修复技术综述[C]//《环境工程》2018年全国学术年会论文集(下册).工业建筑杂志社有限公司:《环境工程》编辑部,2018:5.
|
[53] |
KINGSTON J L T, DAHLEN P R, JOHNSON P C. Assessment of groundwater quality improvements and mass discharge reductions at five in situ electrical resistance heating remediation sites[J]. Ground Water Monitoring and Remediation, 2012,32(3):41-51.
|
[54] |
MUNHOLLAND J L. Electrical resistance heating of groundwater impacted by chlorinated solvents in heterogeneous sand[Z]. ProQuest Dissertations Publishing, 2015.
|
[55] |
HEGELE P R, MUMFORD K G. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating[J]. Advances in Water Resources, 2015,79:153-161.
|
[56] |
HEGELE P R, MCGEE B C W. Managing the negative impacts of groundwater flow on electrothermal remediation[J]. Remediation-The Journal of Environmental Cleanup Costs Technologies&Techniques, 2017,27(3):29-38.
|
[57] |
KROL M M, MUMFORD K G, JOHNSON R L, et al. Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones[J]. Advances in water resources, 2011,34(4):537-549.
|
[58] |
KROL M M, JOHNSON R L, SLEEP B E. An analysis of a mixed convection associated with thermal heating in contaminated porous media[J]. Science of the Total Environment, 2014,499:7-17.
|
[59] |
MARTIN E J, MUMFORD K G, KUEPER B H. Electrical resistance heating of clay layers in water-saturated sand[J]. Ground Water Monitoring and Remediation, 2016,36(1):54-61.
|
[60] |
MARTIN E J, KUEPER B H. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions[J]. Journal of Contaminant Hydrology, 2011,126(3/4):291-300.
|
[61] |
LIANG C J, CHIEN Y C, LIN Y L. Impacts of ISCO persulfate, peroxide and permanganate oxidants on soils:soil oxidant demand and soil properties[J]. Soil&Sediment Contamination, 2012,21(6):701-719.
|
[62] |
RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs):a review[J]. Journal of Hazardous Materials, 2016,312:280-297.
|
[63] |
CAJAL-MARINOSA P, de la CALLE R G, JAVIER RIVAS F, et al. Impacts of changing operational parameters of in situ chemical oxidation (ISCO) on removal of aged PAHs from soil[J]. Journal of Advanced Oxidation Technologies, 2012,15(2):429-436.
|
[64] |
KREMBS F J, SIEGRIST R L, CRIMI M L, et al. ISCO for groundwater remediation:analysis of field applications and performance[J]. Ground Water Monitoring&Remediation, 2010,30(4):42-53.
|
[65] |
HULING S G, ROSS R R, MEEKER Prestbo K. In situ chemical oxidation:permanganate oxidant volume design considerations[J]. Ground Water Monitoring&Remediation, 2017,37(2):78-86.
|
[66] |
ROMERO A, SANTOS A, CORDERO T, et al. Soil remediation by Fenton-like process:phenol removal and soil organic matter modification[J]. Chemical Engineering Journal, 2011,170(1):36-43.
|
[67] |
USMAN M, USMAN M, CHAUDHARY A, et al. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils[J]. Environmental Science and Pollution Research International, 2016,23(2):1371-1380.
|
[68] |
BIACHE C, LORGEOUX C, ANDRIATSIHOARANA S, et al. Effect of pre-heating on the chemical oxidation efficiency:implications for the PAH availability measurement in contaminated soils[J]. Journal of Hazardous Materials, 2015,286:55-63.
|
[69] |
TRUEX M J, MACBETH T W, VERMEUL V R, et al. Demonstration of combined Zero-valent iron and electrical resistance heating for in situ trichloroethene remediation[J]. Environmental Science&Technology, 2011,45(12):5346-5351.
|
[70] |
HEAD N A, GERHARD J I, INGLIS A M, et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay[J]. Water Research, 2020,183:116061.
|
[71] |
RANC B, FAURE P, CROZE V, et al. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils[J]. Environmental Science and Pollution Research International, 2017,24(12):11265-11278.
|
[72] |
CHOWDHURY A, GERHARD J I, REYNOLDS D, et al. Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating:proof of concept[J]. Environmental Science&Technology, 2017,51(22):13295-13303.
|
[73] |
JOHNSON R L, TRATNYEK P G, JOHNSON R O. Persulfate persistence under thermal activation conditions[J]. Environmental Science&Technology, 2008,42(24):9350-9356.
|
[74] |
HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2021,198:110457.
|
[75] |
LI J J, WANG L, PENG L B, et al. A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO[J]. Chemical Engineering Journal, 2020,385:123803.
|
[76] |
CAO B, NAGARAJAN K, LOH K. Biodegradation of aromatic compounds:current status and opportunities for biomolecular approaches[J]. Applied Microbiology and Biotechnology, 2009,85(2):207-228.
|
[77] |
FEITKENHAUER H, MVLLER R, MAUML, et al. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60~70℃ by Thermus and Bacillus spp[J]. Biodegradation (Dordrecht), 2003,14(6):367-372.
|
[78] |
SHAHSAVARI E, ROUCH D, KHUDUR L S, et al. Challenges and current status of the biological treatment of PFAS-contaminated soils[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:602040.
|
[79] |
FLETCHER K E, COSTANZA J, PENNELL K D, et al. Electron donor availability for microbial reductive processes following thermal treatment[J]. Water Research, 2011,45(20):6625-6636.
|
[80] |
PANDEY J, CHAUHAN A, JAIN R K. Integrative approaches for assessing the ecological sustainability of in situ bioremediation[J]. FEMS Microbiology Reviews, 2009,33(2):324-375.
|
[81] |
NEWFIELD K. Impact of thermal remediation on the degradation of naphthalene by indigenous anaerobic bacteria in hydrocarbon contaminated soil[Z]. ProQuest Dissertations Publishing, 2014.
|
[82] |
MARCET T F. Coupling thermal treatment and microbial reductive dechlorination for the enhanced remediation of chlorinated ethenes[Z]. ProQuest Dissertations Publishing, 2018.
|
[83] |
MORADI A M. SMITS K O, SHARP J. Coupled thermally-enhanced bioremediation and renewable energy storage system:conceptual framework and modeling investigation[J]. Water, 2018,10(10):1288.
|
[84] |
LOEFFLER F E, YAN J, RITALAHTI K M, et al. Dehalococcoides mccartyi gen. nov., sp nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi[J]. International Journal of Systematic and Evolutionary Microbiology, 2013,63(2):625-635.
|
[85] |
FLETCHER K E, COSTANZA J, CRUZ-GARCIA C, et al. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance[J]. Environmental Science&Technology, 2011,45(2):712-718.
|
[86] |
LIN C, SHEU D, LIN T, et al. Thermophilic biodegradation of diesel oil in food waste composting processes without bioaugmentation[J]. Environmental Engineering Science, 2012,29(2):117-123.
|
[87] |
MARCET T F, CAPIRO N L, YANG Y, et al. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions[J]. Water Research, 2018,145:21-29.
|
[88] |
FEITKENHAUER H, MÄRKL H. Biodegradation of aliphatic and aromatic hydrocarbons at high temperatures[J]. Water Science&Technology A Journal of the International Association on Water Pollution Research, 2003, 47(10):123.
|
[89] |
VIAMAJALA S, PEYTON B M, RICHARDS L A, et al. Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions[J]. Chemosphere, 2007,66(6):1094-1106.
|
[90] |
MARCET T F, CÀPIRO N L, MORRIS L A, et al. Release of electron donors during thermal treatment of soils[J]. Environmental Science&Technology, 2018,52(6):3642-3651.
|
[91] |
焦文涛,韩自玉,吕正勇,等.土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J].环境工程学报, 2019,13(9):2027-2036.
|
[92] |
ROLAND U, HOLZER F, KOPINKE F D. Combining different frequencies for electrical heating of saturated and unsaturated soil zones[J]. Chemical Engineering&Technology, 2011,34(10):1645-1651.
|
[93] |
HERON G, CARROLL S, NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Ground Water Monitoring&Remediation, 2005,25(4):92-107.
|
[94] |
BEYKE G L, DODSON M E, POWELL T D, et al. Electrode heating with remediation agent:US7290959[P]. 2007-11-06.
|
[95] |
HEATH W O, GAUGLITZ P A, PILLAY G, et al. Heating of solid earthen material, measuring moisture and resistivity:US5545803[P]. 1996-08-13.
|
[96] |
BUETTNER H M, DAILY W D, AINES R D, et al. Electrode wells for powerline-frequency electrical heating of soils:US5907662[P]. 1999-03-25.
|
[97] |
STEGEMEIER G L, VINEGAR H J. Method for recovering contaminants from soil utilizing electrical heating:US5656239[P]. 1997-08-12.
|
[98] |
尹立普,牛静,周广东,等.对污染场地修复的原位电阻加热与蒸汽强化抽提耦合系统:CN111036666[P]. 2020-04-21.
|
[99] |
MCGEE B C W. Electro-thermal dynamic stripping process:US6596142[P]. 2003-07-22.
|
[100] |
BRIDGES J E, SRESTY G C. Apparatus for electrode heating of earth for recovery of subsurface volatiles and semi-volatiles:US5621845[P]. 1997-04-15.
|
[101] |
张文晖,白鹤,张盆.一种用于土壤原位修复的电阻加热井:CN111282981[P]. 2020-06-16.
|
[102] |
USEPA. In situ thermal treatment of chlorinated solvents fundamentals and field applications[EB/OL]. https://www.epa.gov/remedytech/situ-thermal-treatment-chlorinated-solvents-fundamentals-and-field-applications. 2020-10-21.
|
[103] |
SCHENATO L. A review of distributed fibre optic sensors for geo-hydrological applications[J]. Applied Sciences, 2017,7(9):896.
|
[104] |
WAGNER A, MAKI E. Lowering costs and improving results of thermal remediation[EB/OL]. https://files.constantcontact.com/dab41654201/d48078a2-a580-4f46-89c0-9b1cc6491fa7.pdf. 2020-11-19.
|
[105] |
JIANG Y, XI B, YANG Y, et al. In-situ thermal desorption system, in-situ thermal desorption-oxidation repair system and repair method:US20190143385[P]. 2019-05-16.
|
[106] |
HAEMERS J, SAADAOUI H. Device, system and process for treating porous materials:US20170312798[P]. 2017-11-02.
|
[107] |
Design:in situ thermal remediation[EB/OL]. https://frtr.gov/costperformance/pdf/remediation/design_in_situ_thermal_remediation_2009.pdf. 2009-08-28.
|
[108] |
Final report-cost and performance review of electrical resistance heating (ERH) for source treatment[EB/OL]. https://frtr.gov/costperformance/pdf/remediation/Navy-ERH_Review.pdf. 2007-02-15.
|