Citation: | CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 18-24,30. doi: 10.13205/j.hjgc.202205003 |
[1] |
王丽君.抗生素菌渣利用处置技术现状及对策建议[J].绿色科技,2017(18):152-154.
|
[2] |
王金双,赵继红,刘永德.我国抗生素菌渣资源化研究新进展[J].现代食品,2018(10):29-31.
|
[3] |
邹书娟,王一迪,张均雅,等.抗生素菌渣理化性质分析[J].环境科学与技术,2018,41(增刊1):47-52.
|
[4] |
LI Y H,LIU D L,XIE Y M.Comprehensive utilization of antibiotic bacterial residue[J].Shandong Association of Animal Science and Veterinary Medicine,2000,6:28-31.
|
[5] |
CZERNIK S.Bridgewater AV[J].Energy& Fuels,2004,18(2):590-598.
|
[6] |
张旭东,李洪亮,常春.稻壳快速热解制取生物油的试验研究[J].化工新型材料,2015,43(5):112-114.
|
[7] |
朱锡锋,李明.生物质快速热解液化技术研究进展[J].石油化工,2013,42(8):833-837.
|
[8] |
赵锦波,苟鑫,陈皓,等.多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J].生物加工过程,2019,17(4):329-341.
|
[9] |
刘超,王海,等.木质纤维素生物质的催化快速热解[J].化学学报,2014,43(22):7594-7623.
|
[10] |
郑楠,史纪龙,王杰.生物质铁盐催化加氢热解产生生物油与气态烃的研究[J].燃料化学学报,2020,48(4):414-423.
|
[11] |
PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65.
|
[12] |
张秀梅,陈冠益,孟祥梅,等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449.
|
[13] |
PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65.
|
[14] |
THANGALAZHY-GOPAKUMAR S,ADHIKARI S,GUPTA R B,et al.Catalytic pyrolysis of helium and hydrogen to producehydrocarbon fuels from biomass[J].Biological Resources Technology,2011,102:6742-6749.
|
[15] |
CHANDLER D S,RESENED F L P.Comparison of catalytic rapid pyrolysis and catalytic rapid hydrogenation pyrolysis of liquid fuel produced in fluidized bed reactor[J].Energy Fuel,2019,33:3199-3209.
|
[16] |
郑娜,王军.两种铁掺杂木炭在松木加氢热解蒸气催化加氢裂化成甲烷或提质生物油中的性能差异[J].能源燃料,2020(34):546-556.
|
[17] |
吕双亮,谭雪松,庄新银,等.木质素及其模化物催化加氮脱氧研究进展[J].现代化工,2012,32(5):35-40.
|
[18] |
ZHAO Y,FU Y,GUO Q X.Production of aromatic hydrocarbons through catalytic pyrolysis of-valerolactone from biomass[J].Bioresource Technology,2012,114:740-744.
|
[19] |
AGRAFIOTI E,BOURAS G,KALDERIS D,et al.Biochar production by sewage sludge pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2013,101:72-78.
|
[20] |
WANG K G,JOHNSTON P A,BROWN R C.Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system[J].Bioresource Technology,2014,173:124-131.
|
[21] |
ZHANG J,TIAN Y,CUI Y N,et al.Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:a protein model compound study[J].Bioresource Technology,2013,132:57-63.
|
[22] |
REED G P,PATERSON N P,ZHUO Y,et al.Trace element distribution in sewage sludge gasification:source and temperature effects[J].Energy& Fuels,2005,19(1):298-304.
|
[23] |
陈昆,郭斌,贡丽鹏,等.土霉素菌渣热解液的理化特性及成分分析[J].河北科技大学学报,2013,34(6):565-571.
|
[24] |
李艳美,柏雪源,易维明,等.小麦秸秆热解生物油主要成分分析与残炭表征[J].山东理工大学学报(自然科学版),2016,30(1):1-4.
|
[25] |
方书起,石崇,李攀,等.Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J].化工学报,2020,71(4):1637-1645.
|
[26] |
张政,程红,陈红,等.十六烷基三甲基溴化铵修饰的HZSM-5催化稻草催化快速热解芳烃得率的提高[J].生物资源技术,2018(256):241-246.
|
[27] |
RABIU S,AUTA M,KOVO A.An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 Zeolite catalyst[J].Egyptian Journal of Petroleum,2018,27(4):589-594.
|
[28] |
ZHANG H Y,XIAO R,HUANG H.Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J].Bioresource Technology,2009,100(3):1428-1434.
|
[29] |
孙来芝,陈雷,赵保峰,等.Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J].化工学报,2019,70(8):3160-3166.
|
[30] |
MULLEN C A,BOATENG A A.Catalytic pyrolysis GC/MS of lignin from several sources[J].Fuel Processing Technology,2010,91(11):1446-1458.
|
[31] |
王霏,郑云武,黄元波,等.ZSM-5催化生物质三组分和松木热解生物油组分分析[J].农业工程学报,2016,32(增刊2):331-337.
|
[32] |
杨明顺,康善娇,刘卫兵,等.HZSM-5上辣椒茎秆的催化快速热解[J].可再生能源,2015(79):20-27.
|
[33] |
CHEN H P,SI Y H,CHEN Y Q,et al.NOx precursors from biomass pyrolysis:distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J].Fuel,2017,187:367-375.
|
[34] |
LI J,LIU Y W,SHI J Y,et al.The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG FTIR[J].Thermochimica Acta,2008,467(1/2):20-29.
|
[35] |
HAO J F,GUO J Z,DING L,et al.TG-FTIR,Py-two-dimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acidformation mechanisms during glycine pyrolysis[J].Journal of Thermal Analysis and Calorimetry,2014,115(1):667-673.
|
[36] |
LI J,WANG Z Y,YANG X,et al.Evaluate the pyrolysis pathway of glycine and glycylglycine by TG FTIR[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):247-253.
|
[37] |
SHARMA R K,CHAN W G,HAJALIGOL M R.Product compositions from pyrolysis of some aliphatic) a-amino acids[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):69-81.
|
[38] |
ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657.
|
[39] |
CHEN Y H,LIU S E,CHEN C C.Two-step mass spectrometric approach for the Identification of diketopiperazines in chicken essence[J].European Food Research and Technology,2004,218(6):589-597.
|
[40] |
HANSSON K M,AMAND L E,HABERMANN A,et al.Pyrolysis of poly-l-leucine under combustion-like conditions[J].Fuel,2003,82(6):653-660.
|
[41] |
SHARMA R K,CHAN W G,WANG J,et al.On the role of peptides in the pyrolysis of amino acids[J].Journal of Analytical and Applied Pyrolysis,2004,72(1):153-163.
|
[42] |
YUAN S,ZHOU Z J,LI J,et al.HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J].Energy& Fuels,2010,24(11):6166-6171.
|
[1] | KONG Lingrui, LI Xinjue, ZHENG Ru, ZHANG Kuo, LIU Sitong. ENHANCING THE PERFORMANCE OF PARTIAL NITRIFICATION-ANAMMOX BY USING HYDROTALCITE COMPOSITE BIOFILM CARRIERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 16-23. doi: 10.13205/j.hjgc.202401003 |
[2] | YANG Shenhua, ZHANG Lujing, PENG Yongzhen, PANG Hongtao, JIANG Leyong, SUN Shihao, ZHAI Dandan. RESEARCH ADVANCES OF ENHANCING BIOFILM FORMATION OF ANAMMOX[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 1-8. doi: 10.13205/j.hjgc.202401001 |
[3] | ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002 |
[4] | SHI Xiaobei. RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030 |
[5] | LIU Changyuan, HAN Rui, YI Longqiang, LEI Jiahui, ZHANG Cuiya, WU Yinghai. REVIEW ON ENHANCEMENT OF ANAMMOX PROCESS BY QUORUM SENSING SIGNAL MOLECULES AHLs[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 251-258. doi: 10.13205/j.hjgc.202308032 |
[6] | ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006 |
[7] | MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011 |
[8] | LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001 |
[9] | SONG Xiaokang, YIN Fangfang, DING Min, ZHU Cheng, WU Peng, LIU Wenru. NITROGEN REMOVAL FROM MUNICIPAL WASTEWATER BY ANAEROBIC AMMONIA OXIDATION: CHALLENGES AND SOLUTIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 235-243. doi: 10.13205/j.hjgc.202204033 |
[10] | ZHANG Ke, TIAN Shuangchao, DOU Xueyan, ZHANG Chang, DONG Lixin, ZHU Jinliang, XIAO Benyi, LIU Qixin, LIU Jianwei, LIU Junxin. ANAEROBIC/AEROBIC BIOLOGICAL CONTACT OXIDATION PROCESS COUPLED WITH MICROBIAL FUEL CELL TO TREAT RURAL DOMESTIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 139-146. doi: 10.13205/j.hjgc.202203021 |
[11] | GUO Yankai, GUO Jinyan, ZHAO Juan, MA Zhiyuan, NIU Yanyan, YANG Jiaqi, LIAN Jing. PREPARATION OF PMo12/rGO/PPy ANODE BY ELECTRODEPOSITION FOR MICROBIAL FUEL CELLS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 147-153. doi: 10.13205/j.hjgc.202203022 |
[12] | ZHANG Zong-bin, YUE Zheng-bo, WU Jing-hang, WANG Jin. CHARACTERISTICS ANALYSIS OF AN ELECTRICITY-PRODUCING STRAIN SHEWANELLA XMS-1 FROM MARINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 33-39. doi: 10.13205/j.hjgc.202101004 |
[13] | TANG Xin-hua, JIA Yu-yang, CUI Yang, CHEN Mo-yu, LIU Lei. ENHANCEMENT OF MICROBIAL FUEL CELL PERFORMANCE BY Fe-S-N CO-DOPED POROUS CARBON CATHODE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 163-170. doi: 10.13205/j.hjgc.202110023 |
[14] | SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004 |
[15] | XIANG Xi-yi, YU Ji-hong, NIU Ma-dou, HU Xiao-min. EFFECT OF PULSED ELECTRIC AND DIRECT CURRENT FIELD ON NITROGEN REMOVAL BY AN ANAMMOX REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 108-112,233. doi: 10.13205/j.hjgc.202108014 |
[16] | GAO Yan-ming, WANG Ting, LI Jie-ling, WEI Shi-cheng, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. ELECTRICITY GENERATION PROPERTIES OF MICROBIAL FUEL CELL WITH CORN COB ACID PYROLYSIS SOLUTION AS THE SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 127-134. doi: 10.13205/j.hjgc.202111016 |
[17] | MA Xiao-qian, ZHANG Zhe, LIU Chao, WANG Jun-jie, WANG Jia-lin, YU Yi, CAO Rui-jie, SHI Zhi-li, WANG Ya-yi. TREATMENT OF LEACHATE FROM MUNICIPAL SOLID WASTE INCINERATION PLANT BY COMBINED ANAMMOX PROCESS: NITROGEN REMOVAL AND MICROBIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 110-118. doi: 10.13205/j.hjgc.202111014 |
[18] | FU Jin-xiang, QIAN Jie, ZHANG Li, YU Peng-fei, LUO Di, YOU Kun. EFFECT OF HIGH CONCENTRATION PHOSPHORUS ON ANAEROBIC AMMONIA OXIDATION PERFORMANCE AND GRANULAR SLUDGE PROPERTY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 98-102,109. doi: 10.13205/j.hjgc.202011016 |
[19] | CAI Ze-xiang, XIAO Long-wen, ZHANG Da-chao, SU Hao, LI Yong-chao, LAI Cheng. NITROGEN REMOVAL PERFORMANCE OF A NOVEL MULTI-SETTLER ANAEROBIC SPOUTED BED REACTOR VIA ANAEROBIC AMMONIA OXIDATION (ANAMMOX) PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 70-75,83. doi: 10.13205/j.hjgc.202005013 |
[20] | Qi Jiaoqin, Zhu Liang, Xu Xiangyang, Kong Yun, Cai Rui. MICROBIAL FUEL CELLS AND ITS APPLICATION IN BIOLOGICAL WASTEWATER/WASTE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 1-5. doi: 10.13205/j.hjgc.201503001 |
1. | 王婷婷,盛昌栋. 城镇污水污泥低温氧化放热特性的恒温量热分析. 环境工程. 2021(10): 110-115+123 . ![]() |