Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
Citation: WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017

COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA

doi: 10.13205/j.hjgc.202206017
  • Received Date: 2021-11-24
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Under the background of China's carbon peak and carbon neutralization goals,there is a lack of quantitative comprehensive impact assessment on process design in carbon-neutral planning of the wastewater treatment industry.Therefore,based on the LCA framework,a comprehensive impact assessment model of carbon footprint,environment,and economy of the whole life cycle (LCA-CEE) was established.And the model was used to analyse the effects of two different sludge treatment processes in sewage treatment plants (A plant:sludge landfill;B plant:sludge-kitchen waste co-digestion).The comprehensive impact assessment and comparative analysis were conducted on energy consumption,material consumption and pollution discharge in the construction,operation and demolition stages within 30 years.The results showed that the power generation of cogeneration system in plant B reached 38.9 MW·h,realizing energy self-sufficiency and with a carbon neutralization rate up to 133%.Compared with plant A,the economic benefit was 1.6 times higher and the environmental impact was significantly reduced.The LCA-CEE model developed in this study evaluated the energy-saving and emission reduction path from the whole process,providing theoretical support for carbon neutrality planning of the sewage treatment industry.
  • [1]
    苏健,梁英波,丁麟,等.碳中和目标下我国能源发展战略探讨[J].中国科学院院刊,2021,36(9):1001-1009.
    [2]
    WANG K, NAKAKUBO T. Strategy for introducing sewage sludge energy utilization systems at sewage treatment plants in large cities in Japan:a comparative assessment[J]. Journal of Cleaner Production, 2021,316(659):128282.
    [3]
    郝晓地,魏静,曹亚莉.美国碳中和运行成功案例:Sheboygan污水处理厂[J].中国给水排水,2014,30(24):1-6.
    [4]
    郝晓地,金铭,胡沅胜.荷兰未来污水处理新框架:NEWs及其实践[J].中国给水排水,2014,30(20):7-15.
    [5]
    SINGH V, PHULERIA H C, CHANDEL M K. Estimation of energy recovery potential of sewage sludge in india:waste to watt approach[J]. Journal of Cleaner Production, 2020, 276(2/3):122538.
    [6]
    郑秀君,胡彬.我国生命周期评价(LCA)文献综述及国外最新研究进展[J].科技进步与对策,2013,30(6):155-160.
    [7]
    潘艺蓉,罗雨莉,刘俊新,等.义乌市城镇污水提标处理的环境与经济效益分析[J].环境工程学报,2021,15(4):11188-1198
    [8]
    郝晓地,于文波,王向阳,等.地下式污水处理厂全生命周期综合效益评价[J].中国给水排水,2021,37(7):1-10.
    [9]
    ZHUANG H, GUAN J, LEU S Y, et al. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong[J]. Journal of Cleaner Production, 2020, 272:122630.
    [10]
    HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87:424-431.
    [11]
    郝晓地,黄鑫,刘高杰,等.污水处理"碳中和"运行能耗赤字来源及潜能测算[J].中国给水排水,2014,30(20):1-6.
    [12]
    XU C Q, CHEN W, HONG J L.Life-cycle environmental and economic assessment of sewage sludge treatment in China[J]. Journal of Cleaner Production, 2014, 67:79-87.
    [13]
    范秀磊,袁博,李学强,等.青岛麦岛污水处理厂污泥消化及热电联产运行管理经验[J].中国给水排水,2020,36(2):22-25.
    [14]
    郝晓地,詹兴,曹达啓.剩余污泥厌氧共消化技术研究现状及应用趋势[J].环境工程学报,2016,10(12):6809-6818.
    [15]
    田雨晴.餐厨垃圾与污泥混合厌氧消化及流变研究[D].北京:北京建筑大学,2021.
    [16]
    孙飞,徐兴.热水解工艺强化低有机质污泥厌氧消化产气率的中试研究[J].生物化工,2021,7(3):105-107.
    [17]
    龚运.沼气发电工程技术经济及环境效益分析[D].北京:华北电力大学.
    [18]
    刘轶鋆,黄涛,黄晶晶,等.剩余污泥与餐厨垃圾协同厌氧发酵实现电能需求导向的沼气供应情景分析与仿真研究[J].环境科学学报,2020,40(5):1911-1920.
    [19]
    ZHANG Q H, WANG X C, XIONG J Q, et al. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project-Case study of Xi'an, China[J]. Bioresource Technology, 2010, 101(5):1421-1425.
    [20]
    张倩芸.基于LCA的污水处理系统的环境影响评价研究[D].大连:大连理工大学,2016.
    [21]
    陈福仲,刘杰,陈晶晶.餐厨垃圾沼气热电联产经济分析[J].能源研究与利用,2020(2):30-33.
    [22]
    罗小勇,黄希望,王大伟,等.生命周期评价理论及其在污水处理领域的应用综述[J].环境工程,2013,31(4):118-122.
    [23]
    MMA B, AA B, EM C, et al. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region[J]. Science of the Total Environment,2022, 806:150436.
    [24]
    IPCC. 2006 IPCC Guidelines for national greenhouse gas inventory[M].IGES,Japall,2006.
    [25]
    郝晓地,王向阳,江瀚,等.污水处理环境综合效益评价方法及案例应用[J].中国给水排水,2019,35(6):6-15.
    [26]
    梁凯铭.基于LCA的清洁生产审核方法研究[D].大连:大连理工大学, 2016.
    [27]
    黄辉,张勤,傅斌.基于全生命周期成本理论的污水厂投资方案比较[J].中国给水排水,2013,29(1):101-104.
    [28]
    LIU B B, QI W, BING Z, et al. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China[J]. Science of the Total Environment, 2013, 447:361-369.
    [29]
    郝晓地.污水处理碳中和运行技术[M].北京:科学出版社, 2014.
    [30]
    郝晓地,张益宁,李季,等.污水处理能源中和与碳中和案例分析[J].中国给水排水, 2021, 37(20):1-8.
    [31]
    孙雪菲.基于LCA的污水处理厂环境影响评价及能源回收优化研究[D].延边:延边大学,2021.
    [32]
    CHEN G Y, WANG X T, LI J, et al. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge:a case study in China[J]. Science of the Total Environment, 2019, 647:1433-1443.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]WANG Kaihan, YANG Qing, LIU Xiuhong, WANG Jingfan. RESEARCH PROGRESS ON POLLUTION AND CONTROL OF SEWAGE SOURCE HEAT PUMP HEAT EXCHANGER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 72-77. doi: 10.13205/j.hjgc.202408009
    [4]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [5]YAN Lu, CHEN Yun, GUO Yuanhui, HOU Maoxiang, LIU Zuohui. RESEARCH PROGRESS OF SELF-ACTUATED MICRO/NANOROBOTS IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 93-103,114. doi: 10.13205/j.hjgc.202311016
    [6]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [7]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [8]LI Suzhen, REN Jiaqi, CUI Yuwei, ZHANG Zhe. ACCOUNTING OF CARBON FOOTPRINT OF WUYISHAN TOURISM INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 312-318. doi: 10.13205/j.hjgc.202312039
    [9]YUAN Yue, WANG Bo, LI Yongbo, KE Hang, ZHAO Shuiqian. ENHANCEMENT OF CO-DIGESTION OF SLUDGE AND FOOD WASTE BY HIGH TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 91-97. doi: 10.13205/j.hjgc.202302013
    [10]NING Lizhe, REN Jiaqi, ZHANG Zhe, CAI Bofeng, ZHOU Caihua. CARBON FOOTPRINT OF CHINA'S REGIONAL AND PROVINCIAL POWER GRIDS IN 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 229-236. doi: 10.13205/j.hjgc.202303031
    [11]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [12]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [13]XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001
    [14]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [15]GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025
    [16]YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
    [17]WANG Qian, DENG Qiaosi, WU Wei, AI Fangyi, DU Junli, ZHANG Yuanhe, BAI Fan, LEI Mingming, QU Ruihua, GAN Yang, DU Weiwei. OPERATION DIAGNOSIS AND CARBON SOURCE OPTIMIZATION OF YONGCHUAN WASTEWATER TREATMENT PLANT USING PROCESS MODELING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 219-225. doi: 10.13205/j.hjgc.202206028
    [18]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [19]XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033
    [20]LI Rui-cheng. ANALYSIS ON DESIGN CHARACTERISTICS OF A LARGE-SCALE SEMI-UNDERGROUND WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 109-115. doi: 10.13205/j.hjgc.202007017
  • Cited by

    Periodical cited type(15)

    1. 黄来来,郜龙威,李瀚翔,李祎頔,李勇. 苏州某污水处理厂GHG排放综合分析及减排路径. 环境科学. 2025(01): 118-128 .
    2. 陈芃宇,黄心蕊,詹健. 基于LCA的城镇水务系统碳减排研究进展. 净水技术. 2025(02): 44-55 .
    3. 崔晗,王玉亭,李华杰,张笛,吕龙义,任芝军,孙峙,王鹏飞,刘晓阳,孙丽,张光明,高文芳. 城镇污水处理过程的多角度综合评价研究进展. 过程工程学报. 2024(01): 1-16 .
    4. 付博,林向宇,章雨柔,成晙杰,肖黎姗. 基于生命周期评价的东南沿海农村生活污水处理环境影响研究. 环境科学学报. 2024(01): 451-461 .
    5. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    6. 周岩梅,赵一帆,郭逸涵,史建国,强燕,郑美娜,王锦,丁国玉,吕向茹,张洁瑜. 铁路桥梁建设泥浆废水处理-机制砂生产组合工艺碳排放核算及综合评估. 铁路节能环保与安全卫生. 2024(01): 1-9 .
    7. 甄晨曦,刘熙刚,张晓斌,赵荔,王慧. 再生水回用对典型污水处理工艺生态效应的影响. 净水技术. 2024(05): 125-132 .
    8. 周孝文. 生活污水治理与评价指标体系设计研究. 皮革制作与环保科技. 2024(16): 160-162 .
    9. 孙晓辉,陈蓝,董紫君,杨颂,王佳. 市政污水处理厂碳排放核算及降碳实施路径. 环境保护科学. 2024(05): 76-85 .
    10. 刘璐,薛栋,王金鑫. 城镇污水处理厂节能减碳的实现路径与技术探讨. 新型城镇化. 2024(12): 77-80 .
    11. 王波,何军,车璐璐,戴超,郑利杰,王夏晖. 农村生活污水资源利用:进展、困境与路径. 农业资源与环境学报. 2023(05): 1255-1264 .
    12. 陆思成,黄仁东,石英. 黄金尾矿两种无害化处理方案生命周期评价. 黄金科学技术. 2023(05): 845-855 .
    13. 李珏秀,施启旭,赵锐,刘玥,陈俭静,王向飞,刘金茗,刘攀攀,贾金平. 锰基催化剂用于活化过硫酸盐降解有机废水的研究进展. 环境化学. 2023(11): 3861-3877 .
    14. 靳天赐,朱俏俏,李征帛. 基于多区域投入产出模型的新疆家庭能源足迹研究. 煤炭经济研究. 2022(08): 4-12 .
    15. 王玲,张光立,姜丰. 机电产品碳足迹评估方法研究综述. 家电科技. 2022(06): 60-63 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.3 %FULLTEXT: 17.3 %META: 78.9 %META: 78.9 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.8 %其他: 10.8 %其他: 1.3 %其他: 1.3 %Osaka: 1.5 %Osaka: 1.5 %Ureshinomachi-shimojuku: 0.2 %Ureshinomachi-shimojuku: 0.2 %[]: 0.3 %[]: 0.3 %上海: 3.7 %上海: 3.7 %东莞: 1.3 %东莞: 1.3 %临汾: 0.2 %临汾: 0.2 %保定: 0.3 %保定: 0.3 %北京: 2.7 %北京: 2.7 %南京: 0.5 %南京: 0.5 %南宁: 0.3 %南宁: 0.3 %南昌: 0.5 %南昌: 0.5 %厦门: 0.2 %厦门: 0.2 %台州: 0.5 %台州: 0.5 %合肥: 0.8 %合肥: 0.8 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥本哈根: 0.2 %哥本哈根: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.5 %太原: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 3.9 %广州: 3.9 %延边: 0.8 %延边: 0.8 %开封: 0.2 %开封: 0.2 %张家口: 1.0 %张家口: 1.0 %成都: 1.1 %成都: 1.1 %扬州: 0.6 %扬州: 0.6 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.6 %杭州: 0.6 %榆林: 0.2 %榆林: 0.2 %武汉: 1.6 %武汉: 1.6 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.5 %济南: 0.5 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 0.3 %漯河: 0.3 %潮州: 0.5 %潮州: 0.5 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.5 %秦皇岛: 0.5 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 45.8 %芒廷维尤: 45.8 %芝加哥: 0.5 %芝加哥: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.0 %衢州: 1.0 %西宁: 2.4 %西宁: 2.4 %西安: 0.3 %西安: 0.3 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.3 %运城: 1.3 %通辽: 1.3 %通辽: 1.3 %遵义: 0.2 %遵义: 0.2 %郑州: 1.0 %郑州: 1.0 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.5 %重庆: 0.5 %长沙: 0.8 %长沙: 0.8 %青岛: 0.2 %青岛: 0.2 %香港: 0.2 %香港: 0.2 %黄石: 0.6 %黄石: 0.6 %其他其他OsakaUreshinomachi-shimojuku[]上海东莞临汾保定北京南京南宁南昌厦门台州合肥哈尔滨哥本哈根大连天津太原常州常德广州延边开封张家口成都扬州日喀则昆明晋城朝阳杭州榆林武汉沈阳济南济源淄博深圳温州湖州漯河潮州盐城石家庄秦皇岛纽约芒廷维尤芝加哥衡阳衢州西宁西安贵阳运城通辽遵义郑州鄂州重庆长沙青岛香港黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (488) PDF downloads(26) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return