Citation: | HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024 |
[1] |
LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4):272-275.
|
[2] |
LI C, ZHOU J D, SONG J L, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6):605-613.
|
[3] |
CAI Y, LI Y, WANG R, et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%[J]. Advanced Materials, 2021, 33(33):e2101733.
|
[4] |
YAN J C, YAN X L, HU S, et al. Comprehensive interrogation on acetylcholinesterase inhibition by ionic liquids using machine learning and molecular modeling[J]. Environmental Science&Technology, 2021, 55(21):14720-14731.
|
[5] |
YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
|
[6] |
YAN X L, ZHANG J, RUSSO D P, et al. Prediction of nano-bio interactions through convolutional neural network analysis of nanostructure images[J]. ACS Sustainable Chemistry&Engineering, 2020, 8(51):19096-19104.
|
[7] |
NAGASAWA S, AL-NAAMANI E, SAEKI A. Computer-aided screening of conjugated polymers for organic solar cell:classification by random forest[J]. The Journal of Physical Chemistry Letters, 2018, 9(10):2639-2646.
|
[8] |
SAHU H, RAO W N, TROISI A, et al. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors[J]. Advanced Energy Materials, 2018, 8(24):1801032.
|
[9] |
SUN W B, ZHENG Y J, YANG K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019,5(11):eaay4275.
|
[10] |
HACHMANN J, OLIVARES-AMAYA R, ATAHAN-EVRENK S, et al. The harvard clean energy project:large-scale computational screening and design of organic photovoltaics on the world community grid[J]. Journal of Physical Chemistry Letters, 2011, 2(17):2241-2251.
|
[11] |
SCHARBER M C, MVHLBACHER D, KOPPE M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794.
|
[12] |
SUN W B, LI M, LI Y, et al. The use of deep learning to fast evaluate organic photovoltaic materials[J]. Advanced Theory and Simulations, 2019, 2(1):1800116.
|
[13] |
张珂,冯晓晗,郭玉荣,等.图像分类的深度卷积神经网络模型综述[J].中国图象图形学报, 2021, 26(10):2305-2325.
|
[14] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv,2014,abs/1409.1556.
|
[15] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:2261-2269.
|
[16] |
杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用, 2018, 38(增刊2):1-6,26.
|
[17] |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Arxiv, 2014,sbs/1412.3555..
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
|
[19] |
毕常遥,袁晓彤.基于Adam局部优化的分布式近似牛顿深度学习模型训练[J].计算机应用与软件, 2021, 38(10):278-283.
|
[20] |
王健宗,孔令炜,黄章成,等.图神经网络综述[J].计算机工程, 2021, 47(4):12.
|
[21] |
XIONG Z P, WANG D Y, LIU X H, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2020, 63(16):8749-8760.
|
[22] |
DAVID W. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information&Computer Sciences, 1988, 28(1):31-36.
|
[23] |
BAGHER A M. Comparison of organic solar cells and inorganic solar cells[J]. International Journal of Sustainable and Green Energy, 2014, 3(3):53-58.
|