Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 8
Nov.  2022
Turn off MathJax
Article Contents
LIN Jingou. PREPARATION AND PROPERTY ANALYSIS OF TWO COMPOUND HERBICIDE-DEGRADING MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 178-184. doi: 10.13205/j.hjgc.202208025
Citation: LIN Jingou. PREPARATION AND PROPERTY ANALYSIS OF TWO COMPOUND HERBICIDE-DEGRADING MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 178-184. doi: 10.13205/j.hjgc.202208025

PREPARATION AND PROPERTY ANALYSIS OF TWO COMPOUND HERBICIDE-DEGRADING MICROBIAL AGENTS

doi: 10.13205/j.hjgc.202208025
  • Received Date: 2021-12-19
  • Publish Date: 2022-11-08
  • The research and development of herbicide-degrading inoculants is an effective way to solve herbicide residues in a green and low-carbon strategy. In this study, coconut bran carrier (corn flour, coconut bran, kaolin, white sugar) and sodium alginate carrier (sodium alginate, kaolin, glycerin) were used to prepare Penicillium agents. The results showed that the coconut bran carriers were powdery, finely crushed and soft, and were brown or white-brown, while the sodium alginate beads carrier was round granular, hard, and white or yellowish. After one month’s storage, the minimum number of effective viable fungi in both agents was 2.7×1010/g and 1.7×1010/g, higher than the requirements in the microbial inoculum standard of the Microbial Inoculants in Agriculture (GB 20287—2006). The number of molds and the total number of bacteria in the sodium alginate beads carrier was lower than that of the carrier prepared from coconut bran, and the hybrid bacteria rate was 14.3%~17.3%. The water content of coconut bran carrier was generally low, ranging from 2.88%~5.27%, and the water content of sodium alginate beads carrier was 11.53%~13.96%, which was lower than 35.0% (powder) and 20.0% (granule) in GB 20287—2006. The fineness mass fraction in both carriers exceeded 90%, higher than 80.0% in GB 20287—2006. Based on the national standard requirement of the pH value between 5.5~8.5, the best mixing ratio of corn flour, coconut bran, kaolin and white sugar in the coconut bran carrier was 10∶8∶6∶3 (by mass), wherever the sodium alginate beads carrier was: sodium alginate 2% (W/V), kaolin 1% (W/V), glycerin 60% (W/W). Comparing the two carriers by the effective number of viable microbial and hybrid bacteria, the coconut peat carrier was the relatively feasible carrier for herbicide degrading agents. The findings provide good technical support for the prevention and control of herbicide non-point source pollution.
  • loading
  • [1]
    BOHN T,COCCO E,GOURDOL L,et al.Determination of atrazine and degradation products in Luxembourgish drinking water:origin and fate of potential endocrine-disrupting pesticides[J].Food Additives and Contaminants,2011,28:1041-1054.
    [2]
    XING H J,WANG Z L,GAO X J,et al.Atrazine and chlorpyrifos exposure induces liver autophagic response in common carp[J].Ecotoxicology & Environmental Safety,2015,113:52-58.
    [3]
    UREN WEBSTER T M,LAING L V,FLORANCE H,et al.Effects of glyphosate and its formulation,Roundup,on reproduction in zebrafish (Danio rerio)[J].Environmental Science & Technology,2014,48(2):1271-1279.
    [4]
    LENZI G G,FREITAS P,FIDELIS M Z,et al.Paraquat degradation by photocatalysis:experimental desing and optimization[J].Journal of Environmental Science and Health,Part B,2021,56(6):1-9.
    [5]
    ABDOLLAH D,KAMAL H,AHMAD MS,et al.Highly effective degradation of 2,4-Dichlorophenoxyacetic acid herbicide in a three-dimensional sono-electro-Fenton (3D/SEF) system using powder activated carbon (PAC)/Fe3O4 as magnetic particle electrode[J].Journal of Environmental Chemical Engineering,2021,9(5):105889.
    [6]
    符琛琛,蔡燕秋,张建强,等.K-g-C3N4复合材料光催化降解水中阿特拉津[J].水处理技术,2021,47(8):54-64.
    [7]
    王天廓,温玉娟,杨悦锁,等.一株草甘膦高效降解菌的筛选和表征研究[J].农业环境科学学报,2021,40(3):591-599.
    [8]
    王浩东,张嘉宇,钱灿灿,等.敌草隆降解菌 SL-6 的筛选鉴定及降解条件优化[J].华南农业大学学报,2022,43(1):94-101.
    [9]
    TONELLI FERNANDES A F,BRAZ V S,BAUERMEISTER A,et al.Degradation of atrazine by Pseudomonas sp.and Achromobacter sp.isolated from Brazilian agricultural soil[J].International Biodeterioration & Biodegradation,2018,130:17-22.
    [10]
    CARLES L,JOLY M,BONNEMOY F,et al.Biodegradation and toxicity of a maize herbicide mixture:mesotrione,nicosulfuron and S-metolachlor[J].Journal of Hazardous Materials,2018,354(15):42-53.
    [11]
    王茄灵,吕青阳,刘杨,等.基于原位控制技术的粪污除臭菌剂研发现状[J/OL].应用与环境生物学报,1:16[2022-07-11

    ].
    [12]
    高云航,勾长龙,王雨琼,等.低温复合菌剂对牛粪堆肥发酵影响的研究[J].环境科学学报,2014,34(12):3166-3170.
    [13]
    尹子君,李秀芬,任月萍.多孔淀粉固定化堆肥用微生物菌剂的制备条件优化及其堆肥效果验证[J].环境工程学报,2021,15(10):3334-3344.
    [14]
    丁灿,周其胤,贺振洲,等.食藻虫联合高效菌剂处理富营养化水体[J].环境工程,2019,(37)12:109-112

    ,143.
    [15]
    涂玮灵.反硝化菌剂对黑臭河道底泥的修复效果及条件优化研究[D].桂林:广西大学,2014.
    [16]
    杜聪,冯胜,张毅敏,等.微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J].环境工程,2018,36(8):1-7.
    [17]
    LIU J W,PAN D D,WU X W,et al.Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp.JW-1[J].Science of the Total Environment,2018,615:78-86.
    [18]
    高岩.泥秆共热解生物炭耦合菌株Arthrobacter sp.DNS10对阿特拉津污染土壤的修复[D].哈尔滨:东北农业大学,2020.
    [19]
    徐铭阳,卢家森,孟献雨,等.多菌灵降解菌 djl-6 和啶虫脒降解菌 D-2 固体菌剂的研发[J].土壤,2021,53(2):329-335.
    [20]
    HUO Z H,ZHANG N,XU Z H,et al.Optimization of survival and spore formation of Paenibacillus polymyxa SQR-21 during bioorganic fertilizer storage[J].Bioresource Technology,2012,108:190-195.
    [21]
    张传涛.超轻玉米秸秆固定化微生物材料的制备及降解正构烷烃性能研究[D].兰州:西北民族大学,2021.
    [22]
    孙先锋,柴晓蝶,赵敏,等.固定化菌剂制备及对油田措施废液残渣的处理[J].2021,43(9):1077-1088.
    [23]
    张业健,叶海仁、郑向勇,等.固定化包埋技术在水处理领域的应用进展[J].工业水处理,2011,31(1):9-12.
    [24]
    王歆鑫.复合功能菌剂制备及其原位修复阿特拉津污染农田的应用[D].哈尔滨:东北农业大学,2020.
    [25]
    刘常利.柑橘黑点病生防菌筛选、鉴定和制剂开发[D].杭州:浙江大学,2021.
    [26]
    陈亚兰.生物基磺酸盐为营养源的微生物菌剂制备[D].银川:宁夏大学,2019.
    [27]
    李彦虎,牛耀星,刘小霞,等.浆水直投式增香酵母冻干菌剂制备工艺的优化[J].生物技术进展,2018,8(5):441-449.
    [28]
    周涛.黄连连作障碍修复菌剂的制备与应用研究[D].重庆:西南大学,2021.
    [29]
    王晓玲,陈宏坤,郑瑾,等.固定化技术提高微生物对土壤中石油烃降解性能研究进展[J].安徽农业科学,2018,46(30):13-17.
    [30]
    凌婉婷,徐冉芳,刘娟,等.己烯雌酚降解菌固定化条件优化及其降解性能[J].中国环境科学,2016,36(5):1514-1519.
    [31]
    李琦,杨晓玫,张建贵,等.农用微生物菌剂固定化技术研究进展[J].农业生物技术学报,2019,27(10):1849-1857.
    [32]
    MA C,QIN D,SUN Q,et al.Removal of environmental estrogens by bacterial cell immobilization technique[J].Chemosphere,2016,144:607-614.
    [33]
    毛林强,郭惠娟,薛静静,等.干粉菌剂保护剂对溶藻菌溶藻效果与稳定性能的影响[J].环境化学,2019,38(12):2819-2825.
    [34]
    叶峰,张丽丽,吴石金,等.降解三苯类复合微生物菌剂的制备及性能[J].中国环境科学,2009,29(3):300-305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return