Citation: | WU Zi-bo, CUI Yun-xia, CAO Wei-qi, PENG Xin, ZHAO Xiu-qi-zhi-zhen. PREDICTION OF AIR POLLUTANT CONCENTRATIONS IN XUZHOU BASED ON CEEMD-BiGRU MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 9-18. doi: 10.13205/j.hjgc.202209002 |
[1] |
毕谆,周红刚.PM2.5引起的肺部疾病及其作用机制的研究进展[J].环境工程,2016,34(增刊1):496-499.
|
[2] |
谢元博,陈娟,李巍.雾霾重污染期间北京居民对高浓度PM2.5持续暴露健康风险及其损害价值评估[J].环境科学,2014,35(1):1-8.
|
[3] |
LI X L,WANG Y Q,ZHANG Y,et al.Response of soil chemical properties and enzyme activity of four species i-n the Three Gorges Reservoir area to simulated acid rain[J].Ecotoxicology and Environmental Safety,2021,208:111457.
|
[4] |
BARRECA A I,NEIDELL M,SANDERS N J.Long-run pollution exposure and mortality:evidence from the acid rain program[J].Journal of Public Economics,2021,200:104440.
|
[5] |
LI M M,DONG H,WANG B G,et al.Association between ambient ozone pollution and mortality from a s-pectrum of causes in Guangzhou,China[J].Science of the Total Environment,2021,754:142110.
|
[6] |
THONGTHAMMACHART T,ARAKI S,SHIMADERA H,et al.An integrated model combining random forests and WRF/C-MAQ model for high accuracy spatiotemporal PM2.5 predictions in the Kansai region of Japan[J].Atmospheric Environment,2021,262:118620.
|
[7] |
CHARU S,SANJEEV K S,PRAKASH C,et al.Simulation of an extreme dust episode using WRF-CHEM based on optimal ensemble approach[J].Atmospheric Research,2021,249:105296.
|
[8] |
周广强,高伟,谷怡萱,等.WRF-Chem模式降水对上海PM2.5预报的影响[J].环境科学学报,2017,37(12):4476-4482.
|
[9] |
WANG X H,WANG B Z.Research on prediction of environmental aerosol and PM2.5 based on artificial neural network[J].Neural Computing and Applications,2019,31(12):8217-8227.
|
[10] |
CHAUDHURI S,DUTTA D.Mann-Kendall trend of pollutants,temperature and humidity over an urban stat-ion of India with forecast verification using different ARIMA models[J].Environmental Monitoring and Assessment,2014,186(8):4719-4742.
|
[11] |
TAO Q,LIU F,LI Y,et al.Air pollution forecasting using a deep learning model based on 1D convnetsand bidirectional GRU[J].IEEE Access,2019,7:76690-76698.
|
[12] |
FENG R,ZHENG H J,GAO H,et al.Recurrent neural network and random forest for analysis and accurate forecast of atmospheric pollutants:a case study in Hangzhou,China[J].Journal of Cleaner Production,2019,231:1005-1015.
|
[13] |
成华义.GA-PSO-BP神经网络在大气污染物浓度预测中的应用研究[D].武汉:华中科技大学,2014.
|
[14] |
郑霞,胡东滨,李权.基于小波分解和SVM的大气污染物浓度预测模型研究[J].环境科学学报,2020,40(8):2962-2969.
|
[15] |
秦喜文,王强进,王新民,等.基于VMD和LSTM方法的北京市PM2.5短期预测[J].吉林大学学报(地球科学版),2022,52(1):214-221.
|
[16] |
赵彦明.基于时空相关性的LSTM算法及PM2.5浓度预测应用[J].计算机应用与软件,2021,38(6):249-255
,323.
|
[17] |
SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE transactions on Signal Processing,1997,45(11):2673-2681.
|
[18] |
CAO X K,REN N,TIAN G L,et al.A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT[J].Computers and Electronics in Agriculture,2021,181:105955.
|
[19] |
LIANG R,CHANG X T,JIA P T,et al.Mine gas concentration forecasting model based on an optimized BiGRU network[J].ACS Omega,2020,5(44):28579-28586.
|
[20] |
KONSTANTIN Y V,RUSSELL R D,NICKOLAY A K,et al.The net decay time of anomalies in concentrations of atmospheric pollutants[J].Atmospheric Environment,2017,160:19-26.
|
[21] |
GU J,PENG Y X.An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis[J].Digital Signal Processing,2021,113:103050.
|
[22] |
陈煜升,张宇静,赵天良,等.近5年徐州市大气污染变化及相关气象作用[J].环境科学与技术,2019,42(增刊1):152-158.
|
[23] |
ABDOLLAH B,OSMAN E O,DEVIN K H.Structural system identification based on variational mode decomposition[J].Journal of Sound and Vibration,2018,417:182-197.
|
[24] |
THIRUMALAISAMY M R,ANSELL P J.Fast and adaptive empirical mode decomposition for multidimensional,multivariate signals[J].IEEE Signal Processing Letters,2018,25(10):1550-1554.
|
[25] |
REZAEI H,FAALJOU H,MANSOURFAR G.Stock price prediction using deep learning and frequency decomposition[J].Expert Systems with Applications,2021,169:114332.
|
[26] |
CHEN J X,FENG X,JIANG L,et al.State of charge estimation of lithium-ion battery using denoising autoe-noder and gated recurrent unit recurrent neural network[J].Energy,2021,227:120451.
|
[27] |
LONG D K,ZHANG R C,MAO Y Y.Prototypical recurrent unit[J].Neurocomputing,2018,311:146-154.
|
[28] |
LI P,WANG S W,JI H,et al.Air Quality index prediction based on an adaptive dynamic particle swarm optimized bidirectional gated recurrent neural network-China region[J].Advanced Theory and Simulations,2021,4(12):2100220-1-2100220-14.
|
[29] |
NITISH S,GEOFFREY E H,ALEX K,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958.
|
[30] |
MAHMOOD D,MOHAMMAD H S.EclatDS:an efficient sliding window based frequent pattern miningmethod for data streams[J].Intelligent Data Analysis,2011,15(4):571-587.
|
[31] |
SHRINIVAS C,PETER J,SANDER W.Fast nonlinear fourier transform algorithms using higher order exponential integrators[J].IEEE Access,2019,7:145161-145176.
|
[32] |
DIEDERIK P K,JIMMY B.Adam:a method for stochastic optimization[J].Computer Science,2014.
|