Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YAO Chuang, LIU Jianxin, ZHAO Ziling, LIN Guoying, LIU Hui. EFFECTS OF CARBON RESOURCE ADDITON STRATEGIES ON PHOSPHORUS AND NITROGEN REMOVAL AND MICROBIAL COMMUNITY STRUCTURE IN AN A2/O SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 21-26,223. doi: 10.13205/j.hjgc.202201004
Citation: PEI Jianlu, WANG Kunjun, CHEN Xin, LI Xiaochen, LI Yuan, TIAN Lintao, LI Yongguo. NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 78-83. doi: 10.13205/j.hjgc.202211011

NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE

doi: 10.13205/j.hjgc.202211011
  • Received Date: 2021-12-14
    Available Online: 2023-03-24
  • [TETA] [L] ionic liquid was synthesized by the acid-base neutralization reaction of triethylenetetramine and L-lactic acid, and different mass fractions of ionic liquid were loaded into coconut shell activated carbon. The effects of ionic liquid impregnation on the microstructure and CO2 adsorption performance of coconut shell activated carbon were investigated by FTIR, XRD and automatic specific surface and pore size distribution analyzer. The results showed that the interaction between ionic liquid and activated carbon led to the fine crystallization of graphitized microcrystals, which adversely affected the structural stability of activated carbon, while the "plugging" filling of the pore structure of coconut shell activated carbon by ionic liquid led to the significant decrease of CO2 physical adsorption performance, and limited the increase of CO2 chemisorption performance of the composite, which was the root cause of the significant decrease in the total CO2 absorption performance of the composite. And ionic liquid in activated carbon showed a "step" filling behavior from small pore size to large pore size.
  • [1]
    VICENT-LUNA J M, GUTIERREZ-SEVILLANO J J, ANTA J A, et al. Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal-organic framework[J]. Journal of Physical Chemistry C, 2013, 117(40):20762-20768.
    [2]
    CHEN Y F, HU Z Q, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture:a computational investigation[J]. Journal of Physical Chemistry C, 2011, 115(44):21736-21742.
    [3]
    LI Z J, XIAO Y L, XUE W J, et al. Ionic liquid/metal-organic framework composites for H2S removal from natural gas:a computational exploration[J]. The Journal of Physical Chemistry C, 2015, 119(7):3674-3683.
    [4]
    银建中, 蔡佩, 周雪玲,等. 浸渍法制备负载化离子液体吸附剂及其表征[J]. 环境工程, 2017, 35(7):77-81.
    [5]
    SILVA F W M, MAGALHAES G M, JARDIM E O, et al. CO2 adsorption on ionic liquid-modified Cu-BTC:experimental and simulation study[J]. Adsorption Science Technology, 2015, 33(2):223-242.
    [6]
    SEZGINEL K B, KESKIN S, UZUN A. Tuning the gas separation performance of Cu-BTC by ionic liquid incorporation[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4):1139-1147.
    [7]
    MA J, YING Y P, GUO X Y, et al. Fabrication of mixed-matrix membrane containing metal organic framework composite with task specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2016, 4(19):7281-7288.
    [8]
    BAN Y J, LI Z J, LI Y S, et al. Confinement of ionic liquids in nanocages:tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie, 2015, 54(51):15483-15487.
    [9]
    KINIK F P, ALTINTAS C, BALCI V, et al.[BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8:elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces, 2016, 8(45):30992-31005.
    [10]
    KOYUTURK B, ALTINTAS C, KINIK F P, et al. Improving gas separation performance of ZIF-8 by[BMIM][BF4] incorporation:interactions and their consequences on performance[J]. Journal of Physical Chemistry C, 2017, 121(19):10370-10381.
    [11]
    XIA X X, HU G Q, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9):6022-6029.
    [12]
    HU P C, ZHANG R, LIU Z C, et al. Absorption performance and mechanism of CO2 in aqueous solutions of amine-based ionic liquids[J]. Energy & Fuels, 2015, 29(9):6019-6024.
    [13]
    ZHANG G J, ZHAO P Y, HAO L X, et al. Amine-modified SBA-15(P):a promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24:22-33.
    [14]
    TZIALLA O, KAKASIMOS G, ATHANASEKOU C, et al. Porous carbons from ionic liquid precursors confined within nanoporous silicas[J]. Microporous & Mesoporous Materials, 2016, 223:163-175.
    [15]
    SERAFIN J. Utilization of spent dregs for the production of activated carbon for CO2 adsorption[J]. Polish Journal of Chemical Technology, 2017, 19(2):44-50.
    [16]
    SUMRIT M, PHANSIRI M, WANWIMON P, et al. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(Ⅲ) adsorption from aqueous solution[J]. The Scientific World Journal, 2015, 2015(1):415961.
    [17]
    聂千. 活性炭孔结构对CO2和CH4吸附分离性能的影响[D]. 太原:太原理工大学, 2021.
    [18]
    WEI J W, MEI D J, LIN Z F, et al. Effects of TETA or TEPA loading on CO2 adsorption properties using pore-expanded KIT-6 as support[J]. Nano Brief Reports and Reviews, 2018,13(4):1850042.
    [19]
    ACHARYA J, SAHU J N, SAHOO B K, et al. Removal of chromium(Ⅵ) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride[J]. Chemical Engineering Journal, 2009, 150(1):25-39.
  • Relative Articles

    [1]GUO Xiang, GUO Xinchao, XIONG Jiaqing, ZHOU Jiajia. Effect of DO and C/N on nitrogen and phosphorus removal efficiency of A2/O-MBR at low temperature[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 118-124. doi: 10.13205/j.hjgc.202501013
    [2]ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002
    [3]BAO Meiling, HU Zhiquan, ZHANG Qiang, HONG Hui, DENG Jun, PEI Yunxia, LI Bingtang. CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 35-42. doi: 10.13205/j.hjgc.202408005
    [4]ZHUANG Linlan, QIAN Weiyi, HU Zhen, WU Haiming, XIE Huijun, WANG Yuechang, LIU Huaqing, ZHANG Jian. ADVANCED WASTEWATER PURIFICATION AND RESOURCE TRANSFORMATION BY MICROALGAE-CONSTRUCTED WETLAND COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 107-113. doi: 10.13205/j.hjgc.202309013
    [5]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [6]LI Zhanpeng, YUAN Huizhou, KE Shuizhou, YUAN Jiajia, ZHU Jia. EFFECTS OF DIMETHYL PHTHALATE ON VEGETATION-ACTIVATED SLUDGE PROCESS AND ITS REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 202-210. doi: 10.13205/j.hjgc.202212027
    [7]LI Yajing, WANG Shaopo, LIU Lu, JIA Liyuan. SECRETORY CHARACTERISTICS OF EPS AND THE SIGNAL MOLECULES RELEASE UNDER DIFFERENT ORGANIC LOADING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 47-52. doi: 10.13205/j.hjgc.202202008
    [8]NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004
    [9]LIU Xin-yuan, HU Wen-jia, OUYANG Fan, NIE Jia-min, WU Nan, YANG Fan, KONG Si-fang. BIOGAS PRODUCTION AND MICROBIAL COMMUNITY SUCCESSION DURING SEQUENCING BATCH ACCLIMATIZATION OF DIGESTED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 136-141,188. doi: 10.13205/j.hjgc.202103019
    [10]ZHANG Ji-ku, SUN Mian. TREATMENT OF RURAL DOMESTIC SEWAGE BY AN AIR LIFTING A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 18-23. doi: 10.13205/j.hjgc.202101002
    [11]LI Bing, QIU Yong, TIAN Yu-xin, ZHU Yin, WANG Yan, ZHENG Kai-kai, LI Ji. PERFORMANCE EVALUATION AND SCENARIO SIMULATION FOR PROCESS RETROFITTING OF WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 93-99. doi: 10.13205/j.hjgc.202007015
    [12]LI Yi-huan, XI Lei-lei, ZHONG Yi-jie, HU Yu, ZHANG Hui-min, WU Zhen-yu. OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 76-81,26. doi: 10.13205/j.hjgc.202003013
    [13]ZHENG Jun, ZHAO Meng-ke, ZHANG De-wei, ZHANG Ming-rui, WANG Meng-lin. START-UP OF A NEW MULTI-POINT INFLUENT A2/O PROCESS TO REMOVE NITROGEN AND PHOSPHORUS IN WASTEWATER WITH LOW CARBON TO NITROGEN RATIO[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 31-35,42. doi: 10.13205/j.hjgc.202009005
    [14]SUN Peng-zhan, WU Jun-qi, KANG Li-min. EFFECT OF INFLUENT MODES AND RECIRCULATION POINT POSITION ON NITROGEN AND PHOSPHORUS REMOVAL BY A MULTI-STAGE BIOLOGICAL CONTACT OXIDATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 54-59,195. doi: 10.13205/j.hjgc.202005010
    [15]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
    [17]Yuan Teng Liu Chaoxiang Xiang Heng Yuan Linjiang Huang Xu, . STUDY ON TREATMENT OF MICRO-POLLUTED RIVER WATER BY THE COMPOSITE FLOW TEST APPARATUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 34-38. doi: 10.13205/j.hjgc.201504008
    [18]Han Jinfeng Zhang Shuting, . RESEARCH ADVANCES ON WASTE SOLID AS EXTERNAL CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 108-111. doi: 10.13205/j.hjgc.201504023
  • Cited by

    Periodical cited type(4)

    1. 杨晓贝. 城市污水脱氮除磷效果的强化途径及发展方向. 化纤与纺织技术. 2024(04): 97-99 .
    2. 高彦林. R对多级O/A-MBR工艺脱氮除磷的影响. 山西建筑. 2024(15): 182-186 .
    3. 郭志强,戚光辉,张景飞,郭攀. 改良型A~2O-MBR工艺处理低碳氮比污水的实验研究. 水处理技术. 2024(11): 95-99 .
    4. 刘遥,张东方,张文俊. A~2/O工艺处理城镇污水的脱氮除磷性能研究. 中国新技术新产品. 2022(22): 125-127 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.9 %FULLTEXT: 13.9 %META: 85.2 %META: 85.2 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.5 %其他: 18.5 %临汾: 0.5 %临汾: 0.5 %兰州: 0.9 %兰州: 0.9 %北京: 0.9 %北京: 0.9 %台州: 1.4 %台州: 1.4 %呼和浩特: 0.9 %呼和浩特: 0.9 %天津: 0.5 %天津: 0.5 %宣城: 0.5 %宣城: 0.5 %常德: 0.9 %常德: 0.9 %广州: 0.9 %广州: 0.9 %弗吉: 0.5 %弗吉: 0.5 %张家口: 0.9 %张家口: 0.9 %成都: 0.9 %成都: 0.9 %扬州: 0.5 %扬州: 0.5 %昆明: 0.9 %昆明: 0.9 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.5 %杭州: 0.5 %武汉: 2.8 %武汉: 2.8 %济源: 0.5 %济源: 0.5 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 53.7 %芒廷维尤: 53.7 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 1.4 %西宁: 1.4 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.2 %运城: 3.2 %遵义: 0.5 %遵义: 0.5 %郑州: 0.9 %郑州: 0.9 %重庆: 0.5 %重庆: 0.5 %长沙: 0.5 %长沙: 0.5 %阜阳: 0.9 %阜阳: 0.9 %鞍山: 0.9 %鞍山: 0.9 %其他临汾兰州北京台州呼和浩特天津宣城常德广州弗吉张家口成都扬州昆明晋城朝阳杭州武汉济源漯河芒廷维尤芝加哥西宁西安贵阳运城遵义郑州重庆长沙阜阳鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (183) PDF downloads(2) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return