Citation: | ZHAO Liya, LIN Peiru, ZHENG Yi, WANG Pan, REN Lianhai. INFLUENCING FACTORS OF SEMI-CONTINUOUS DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 120-126. doi: 10.13205/j.hjgc.202211017 |
[1] |
ZHANG Y C, WU D, SU Y L, et al. Occurrence, influence and removal strategies of mycotoxins, antibiotics and microplastics in anaerobic digestion treating food waste and co-digestive biosolids:a critical review[J]. Bioresource Technology,2021,330:124987.
|
[2] |
LI Q, YUWEN C S, CHENG X R, et al. Responses of microbial capacity and community on the performance of mesophilic co-digestion of food waste and waste activated sludge in a high-frequency feeding CSTR[J]. Bioresource Technology,2018,260:85-94.
|
[3] |
杨林海.有机垃圾干式厌氧发酵处理试验研究[D].兰州:兰州理工大学,2013.
|
[4] |
李娜.农村混合废物干式厌氧发酵工艺优化及沼渣的综合利用[D].武汉:武汉理工大学,2018.
|
[5] |
方少辉. 农村混合物斜干式厌氧发酵生物质能源转化的特性研究[D].兰州:兰州交通大学,2012.
|
[6] |
ZHENG Y, WANG P, YANG X Y, et al. Process performance and microbial communities in anaerobic Co-digestion of sewage sludge and food waste with a lower range of carbon/nitrogen ratio. Bioenerg. Res. (2021). https://doi.org/10.1007/s12155-021-10357-2.
|
[7] |
BI S J, HONG X J, YANG H Z, et al. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste[J]. Renewable Energy,2020,150:213-220.
|
[8] |
JANG H M, KIM J H, HA J H, et al. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater[J]. Bioresource Technology,2014,165:174-182.
|
[9] |
GANESH R, TORRIJOS M, SOUSBIE P, et al. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste:comparison of start-up, reactor stability and process performance[J]. Waste management (New York, N.Y.),2014,34(5):875-885.
|
[10] |
DAI X H, DUAN N N, DONG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions:stability and performance[J]. Waste Management,2013,33(2):308-326.
|
[11] |
赵明星,高常卉,李娟,等.餐厨垃圾厌氧干发酵制氢及其强化研究[J].食品与发酵工业,2021,47(22):157-161.
|
[12] |
ABUBACKAR H N, KESKIN T, ARSLAN, et al. Effects of size and autoclavation of fruit and vegetable wastes on biohydrogen production by dark dry anaerobic fermentation under mesophilic condition[J]. Pergamon,2019,44(33):17767-17780.
|
[13] |
彭朝晖,樊战辉,孙家宾,等. 搅拌时间和顶空低压对猪粪产甲烷速率的影响[J].中国沼气,2017,35(6):50-55.
|
[14] |
LAIQ U R M, IQBAL A, CHANG C, et al. Water environment research:a research publication of the Water Environment Federation[J]. Anaerobic Digestion,2019,91(10):.
|
[15] |
国家环境保护总局.水和废水监测分析方法[M]. 2版. 北京:中国环境科学出版社,2009.
|
[16] |
国家环境保护总局.水质化学需氧量的测定快速消解分光光度法:HJ/T 399-2007[S]. 北京:中国环境科学出版社,2007.
|
[17] |
国家环境保护总局.水质氨氮的测定纳氏试剂分光光度法:HJ/T 535-2009[S]. 北京:中国环境科学出版社,2009.
|
[18] |
ZHANG X J, ZHAN Y B, ZHANG H, et al. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting[J]. Bioresource Technology,2021,340:125714.
|
[19] |
朱教宁,李永平,庞震鹏,等. 机械搅拌强度对牛粪与玉米秸秆混合厌氧发酵性能的影响[J].河南农业科学,2021,50(4):88-95.
|
[20] |
张念瑞,李倩,许曼娟,等. 进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J].环境工程学报,2018,12(2):638-644.
|
[21] |
周慧敏,姜珺秋,王琨,等. 有机负荷和进料频率对高含固厨余垃圾厌氧消化系统性能的影响[J]. 环境科学学报,2020,40(10):3639-3650.
|
[21] |
王玉峰.垃圾分类后厨余垃圾处理问题及改进措施[J].智能城市,2021,7(4):109-110.
|
[22] |
SAMEENA B, SUDHARSHAN J, GANGAGNI R, et al. Comparison of mesophilic and thermophilic methane production potential of acids rich and high-strength landfill leachate at different initial organic loadings and food to inoculum ratios[J]. Science of the Total Environment,2020,715:136658.
|
[23] |
LI Y, ZHANG Y, KONG X Y, et al. Effects of ammonia on propionate degradation and microbial community in digesters using propionate as a sole carbon source:effects of ammonia on propionate degradation and microbial community[J]. Journal of Chemical Technology & Biotechnology,2017,92(10):2538-2545.
|
[24] |
周慧敏. 水平流厌氧消化系统处理高含固厨余垃圾的效能与机制[D].哈尔滨:哈尔滨工业大学,2020.
|
[25] |
HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology,2016,18(11):3896-3909.
|
[26] |
GUO H G, CHEN Q L, HU H W, et al. High-solid anaerobic co-digestion of pig manure with lignite promotes methane production[J]. Journal of Cleaner Production,2020,258:120695.
|
[27] |
ZHANG J Y, WANG Z Y, WANG Y W, et al. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure[J]. Bioresource Technology,2017,245(Pt A):850-859.
|