Citation: | LI Mei, HE Xuelian, FENG Yanping, LIU Jian. RECOVERY OF CALCIUM CARBONATE AFTER EXTRACTING CALCIUM SALT FROM FLY ASH OF MUNICIPAL SOLID WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 182-188,198. doi: 10.13205/j.hjgc.202211026 |
[1] |
MAGNANELLI E, TRANÅS O L, CARLSSON P, et al. Dynamic modeling of municipal solid waste incineration[J]. Energy, 2020, 209:118426.
|
[2] |
LU S Y, YANG D F, GE X, et al. The internal exposure of phthalate metabolites and bisphenols in waste incineration plant workers and the associated health risks[J]. Environ Int, 2020, 145:106101.
|
[3] |
QUINA M J, BORDADO J M, QUINTA-FERREIRA R M. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates[J]. Waste Management, 2014, 34(2):430-438.
|
[4] |
童立志,韦黎华,王峰,等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5):2132-2139.
|
[5] |
XU H, MIAO J D, CHEN P, et al. Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China[J]. Engineering Geology, 2019, 255:59-68.
|
[6] |
谭锦涛,吴新,李军辉,等. 稻壳灰中温热处理稳固化垃圾飞灰重金属[J]. 中国环境科学, 2020, 40(7):3054-3060.
|
[7] |
许鹏,赵庆良,邱微. 垃圾焚烧飞灰制作碱激发砖的环境安全性评估[J]. 哈尔滨工业大学学报, 2020, 52(11):40-45.
|
[8] |
ZHAO S Z, LIU B, DING Y J, et al. Study on glass-ceramics made from MSWI fly ash, pickling sludge and waste glass by one-step process[J]. Journal of Cleaner Production, 2020, 271:122674.
|
[9] |
LIU J, HU L, TANG L P, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021, 402:123451.
|
[10] |
WANG B M, FAN C C. Hydration behavior and immobilization mechanism of MgO-SiO2-H2O cementitious system blended with MSWI fly ash[J]. Chemosphere, 2020, 250:126269.
|
[11] |
王琦,郭德琪. 轻质碳酸钙制备工艺参数研究[J]. 无机盐工业, 2018, 50(3):43-45.
|
[12] |
KANG D, SON J, YOO Y, et al. Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure[J]. Chemical Engineering Journal, 2020, 380:122534.
|
[13] |
刘兴帅. 城市垃圾焚烧飞灰制备轻质碳酸钙及重金属迁移研究[D]. 北京:中国矿业大学, 2019.
|
[14] |
陈秋鸽,王戬,张志业,等. 磷石膏脱硫钙渣浸取液中杂质对碳酸钙晶型的影响[J]. 化工进展, 2016, 35(11):3714-3719.
|
[15] |
ZHAO K X, HU Y Y, TIAN Y Y, et al. Chlorine removal from MSWI fly ash by thermal treatment:effects of iron/aluminum additives[J]. Journal of Environmental Sciences (China), 2020, 88:112-121.
|
[16] |
郑旭帆,杜艺,苗恩东,等. 城市固体废弃物焚烧飞灰碳酸化研究进展[J]. 洁净煤技术, 2022, 28(1):187-197.
|
[17] |
时婷,王新刚,巫建锋,等. 磷石膏脱硫钙渣制备轻质碳酸钙[J]. 化工进展, 2015, 34(1):178-182.
|
[18] |
郭琳琳,范小振,张文育,等. 电石渣制备高附加值碳酸钙的研究进展[J]. 化工进展, 2017, 36(1):364-371.
|
[19] |
翟文琰,李孟,张倩. 过硫酸盐协同光催化纳米ZnO降解盐酸四环素的影响机制[J]. 中国环境科学, 2020, 40(6):2483-2492.
|
[20] |
张宇晨,陈小朵,桂思,等. 垃圾焚烧飞灰中矿物组分和重金属污染特征研究[J]. 环境工程, 2022:1-9.
|
[21] |
折开浪,李萍,刘景财,等. 碳酸化对不同碱度飞灰中重金属的长期影响研究[J]. 中国环境科学, 2022,42(8):3832-3840.
|
[22] |
LENG L J, LENG S Q, CHEN J, et al. The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass[J]. Bioresour Technol, 2018, 259:156-163.
|
[23] |
TAGHIPOUR M, JALALI M. Heavy metal release from some industrial wastes:influence of organic and inorganic acids, clay minerals, and nanoparticles[J]. Pedosphere, 2018, 28(1):70-83.
|
[24] |
JIAO F C, ZHANG L, DONG Z B, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152:108-115.
|
[25] |
LUO H W, CHENG Y, HE D Q, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of the Total Environment, 2019, 668:90-103.
|
[26] |
ZHANG W, ZHANG F Z, MA L P, et al. An efficient methodology to use hydrolysate of phosphogypsum decomposition products for CO2 mineral sequestration and calcium carbonate production[J]. Journal of Cleaner Production, 2020, 259:120826.
|
[27] |
颜鑫,卢云峰,马媛媛,等. 氯化钙-氨水体系生产纳米碳酸钙的复合碳化机理研究[J]. 无机盐工业, 2019, 51(7):77-80.
|
[28] |
王芬,余军霞,肖春桥,等. CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报, 2017, 36(1):43-50.
|
[29] |
宋靖钊. 焙烧-水浸-碳化法制备碳酸钙的工艺研究[D]. 天津:河北工业大学, 2020.
|
[30] |
HAN Y S, HADIKO G, FUJI M, et al. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method[J]. Journal of Crystal Growth, 2005, 276(3/4):541-548.
|
[31] |
HAN Y S, HADIKO G, FUJI M, et al. Influence of initial CaCl2 concentration on the phase and morphology of CaCO3 prepared by carbonation[J]. Journal of Materials Science, 2006, 41(14):4663-4667.
|
[32] |
赵历,卓民权,龚福忠,等. 碳化法制备球霰石碳酸钙微球及形成机理[J]. 无机盐工业, 2021, 53(3):38-43.
|
[1] | ZHAO Chutong, GUAN Yanyan, ZHANG Ze, WANG Xiaona, GAO Ming, WU Chuanfu, WANG Qunhui. EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 213-220,189. doi: 10.13205/j.hjgc.202312026 |
[2] | DING Jiamin, LU Shengyong, LIN Xiaoqing, PENG Yaqi, HE Yao. INFLUENCE OF S-N-P-INHIBITOR ON FLY ASH CHARACTERISTICS AND PCDD/Fs CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 88-93,17. doi: DOI:10.13205/j.hjgc.202207013 |
[3] | MA Yi, ZHENG Ren-dong, ZHOU Zhi-hao, JIANG Jia-hao, WANG Guo-bin, YAN Mi. BOTTLENECK OF APPLICATION OF DISPOSAL TECHNOLOGIES FOR FLY ASH FROM MUNICIPAL SOLID WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 237-243. doi: 10.13205/j.hjgc.202205033 |
[4] | LIU Chuanliang. PERFORMANCE OF ATOMIZED SPRAYING SUSPENDED DESULFURIZATION OF FLY ASH IN CFB BOILER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 81-87. doi: DOI:10.13205/j.hjgc.202207012 |
[5] | ZHANG Yuchen, CHEN Xiaoduo, GUI Si, SU Hua, ZHANG Weifang, LIU Changqing, WU Chunshan, ZHENG Yuyi. MINERAL COMPONENTS AND HEAVY METAL POLLUTION CHARACTERISTICS IN WASTE INCINERATION FLY ASH IN FUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 102-109. doi: 10.13205/j.hjgc.202208014 |
[6] | NI Haifeng, DAN Zeng, ZHOU Wenwu, ZHOU Peng, XU Fei, YANG Tao, MENG Dean, CHEN Guanyi. CHARACTERISTICS ANALYSIS AND RISK ASSESSMENT OF HEAVY METALS OF WASTE INCINERATION FLY ASH IN LHASA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 89-93,131. doi: 10.13205/j.hjgc.202203014 |
[7] | WANG Xiao-na, GAO Ming, RAO Yi, WANG Ying, WU Chuan-fu, WANG Qun-hui. EFFECT OF LACTIC ACID FERMENTATION BROTH OF FRUIT AND VEGETABLE WASTE ON REMOVAL OF CHLORINE AND HEAVY METALS FROM FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 188-192. doi: 10.13205/j.hjgc.202112028 |
[8] | SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017 |
[9] | XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027 |
[10] | SONG Qian-nan, WANG Feng, TANG Yi, TONG Li-zhi, HU Bin, YANG Xiao-jin, HU Qing. OPTIMIZATION OF CHELATION CONDITIONS FOR FLY ASH BY CHELATING AGENTS AND STABILITY EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 190-195,215. doi: 10.13205/j.hjgc.202010030 |
[11] | ZHANG Kai-ru, DENG Dong-yang, JIA Wen-chao, CHEN Gui-hua, WU Ming-liang, JU Yong-ming, LI Yan. RESEARCH PROGRESS IN DETOXIFICATION TECHNOLOGY OF MEDICAL WASTE INCINERATOR FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 175-184. doi: 10.13205/j.hjgc.202009028 |
[12] | WU Xiang-yu, WANG Yi-tian, ZHANG Han, XU Hong-yong, CAI Lan-kun. LEACHING ENVIRONMENTAL RISK EVALUATION OF Pb IN SOLIDIFIED/STABILIZED MUNICIPAL SOLID WASTE INCINERATION FLY ASH UNDER WETTING AND DRYING INTERMITTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 135-139. doi: 10.13205/j.hjgc.202011022 |
[14] | Sun Zijie Tian Kan Liu Tao Tian Honghai, . CURRENT SITUATION AND COUNTERMEASURES ON THE DEVELOPMENT ON HEAVY METAL REFERENCE MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 136-140. doi: 10.13205/j.hjgc.201503027 |
[15] | Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035 |
[16] | Yang Long Sun Changhong Li Shanshan Liu Guizhong, . COMPARATIVE STUDY ON HEAVY METAL POLLUTION OF SURFACE DUST IN TYPICAL INDUSTRIES ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 122-125. doi: 10.13205/j.hjgc.201502027 |
[17] | Chen Yasong, Zhang Chao, Chen Zhenguo, Dong Wenjie, Xu Bingxin. EARLY WARNING OF ACTIVATED SLUDGE INHIBITORY ACTION BY HEAVY METALS BASED ON OXYGEN UPTAKE RATE INDEX[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 27-31. doi: 10.13205/j.hjgc.201502006 |
[18] | Wu Gaoqiang, Shi Xiaoliang, Gu Hongbo, Feng Hong, Liu Zhengzheng, Sun Jianxi. CHARACTERISTICS IDENTIFICATION OF ASH GENERATED BY COAL-FIRED POWER PLANT BLENDING SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 113-116. doi: 10.13205/j.hjgc.201502025 |
[19] | SIMULATION EXPERIMENT OF SINTERING CEMENT USING HEAVY METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 91-94. doi: 10.13205/j.hjgc.201412016 |
[20] | RESEARCH PROGRESS ON IMMOBILIZATION AND REMOVAL OF HEAVY METALS FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 82-86. doi: 10.13205/j.hjgc.201412014 |