Citation: | ZHANG Zekun, WAN Dan, XU Hao, YAN Wei, JIN Xiaoliang. RESEARCH STATUS AND DEVELOPING TREND OF ELECTRO-CATALYTIC REDUCTION OF CO2 BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 222-230. doi: 10.13205/j.hjgc.202211030 |
[1] |
SU Y, YU Y N, ZHANG N, et al. Carbon emissions and environmental management based on big data and streaming data:a bibliometric analysis[J]. Science of the Total Environment, 2020, 733:138984.
|
[2] |
严刚, 郑逸璇, 王雪松, 等. 基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):309-319.
|
[3] |
刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(3):1-8.
|
[4] |
SEH Z W, KIBSGAARD J, DICKENS C, et al. Combining theory and experiment in electrocatalysis:insights into materials design[J]. Science, 2017, 355(6321):eaad4998.
|
[5] |
ALBO J, ALVAREZ-GUERRA M, CASTAÑO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chemistry, 2015, 17(4):2304-2324.
|
[6] |
APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8):6621-6658.
|
[7] |
OLAH G A, PRAKASH G, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. Journal of the American Chemical Society, 2011, 133(33):12881-12898.
|
[8] |
JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(5):2165-2177.
|
[9] |
LI F W, THEVENON A, ROSAS-HERNÁNDEZ A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577(7791):509-513.
|
[10] |
ARQUER F, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activitiesgreater than 1 A/cm2[J]. Science, 2020, 367(6478):661-666.
|
[11] |
WHITE H D, GRIFFITH B C. Author cocitation:a literature measure of intellectual structure[J]. Journal of the American Society for Information Science, 1981, 32(3):153-172.
|
[12] |
邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2):143-148.
|
[13] |
JIMÉNEZ-GARCÍA M, RUIZ-CHICO J, PEÑA-SÁNCHEZ A R, et al. A bibliometric analysis of sports tourism and sustainability (2002-2019)[J]. Sustainability, 2020, 12(7):2840.
|
[14] |
王永林, 张传合, 赵宇鹏, 等. 基于Web of Science数据库的土壤生物修复研究趋势分析[J]. 环境工程, 2021, 39(9):199-204.
|
[15] |
ECK N, WALTMAN L. Software survey:VOS viewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538.
|
[16] |
胡旭,江涵,张锐.沙特能源转型及氢能发展展望[J].储能科学与技术,2022,11(7):2354-2365.
|
[17] |
刘辰, 马鸾宇. 沙特阿拉伯新能源政策研究[J]. 长春师范大学学报, 2021,40(3):63-68.
|
[18] |
ALHEJI A K B. 沙特阿拉伯王国生态城建设体系研究[D]. 天津:天津大学, 2019.
|
[19] |
梅德文, 葛兴安, 邵诗洋. 自愿减排交易助力实现"双碳"目标[J]. 清华金融评论, 2021(10):56-59.
|
[20] |
任孝平, 杨云, 周小林, 等. 2006-2015年国内科研机构国际合作现状研究[J]. 情报工程, 2019, 5(4):70-78.
|
[21] |
PURVIS B, MAO Y, ROBINSON D. Three pillars of sustainability:in search of conceptual origins[J]. Sustainability science, 2019, 14(3):681-695.
|
[22] |
BAILÓN-MORENO R, JURADO-ALAMEDA E, RUIZ-BAÑOS R, et al. The unified scientometric model. Fractality and transfractality[J]. Scientometrics, 2005, 63(2):231-257.
|
[23] |
魏明坤. 基于h指数修正的学者历时影响力研究[J]. 现代情报, 2021, 41(1):152-157.
|
[24] |
CALLON M, COURTIAL J P, TURNER W A, et al. From translations to problematic networks:an introduction to co-word analysis[J]. Social Science Information, 1983, 22(2):191-235.
|
[25] |
MISTRY H, VARELA A S, KVHL S, et al. Nanostructured electrocatalysts with tunable activity and selectivity[J]. Nature Reviews Materials, 2016, 1(4):16009.
|
[26] |
WANG L M, CHEN W L, ZHANG D D, et al. Surface strategies for catalytic CO2 reduction:from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 21(48):5310-5349.
|
[27] |
董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6):2492-2509.
|
[28] |
穆春辉, 张艺馨, 寇伟, 等. 镍氮掺杂有序大孔/介孔碳负载银纳米颗粒用于高效电催化CO2还原[J]. 化学学报, 2021, 79(7):925-931.
|
[29] |
WANG X W, SUN G Z, ROUTH P, et al. Heteroatom-doped graphene materials:syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20):7067-7098.
|
[30] |
HE J F, JOHNSON N, HUANG A X, et al. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018, 11(1):48-57.
|
[31] |
于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4):1815-1824.
|
[32] |
KUHL K, CAVE E, ABRAM D, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5:7050-7059.
|
[33] |
ITO Y, KUKUNURI S, JEONG S, et al. Phase-dependent electrochemical CO2 reduction ability of NiSn alloys for formate generation[J]. ACS Applied Energy Materials, 2021, 4(7):7122-7128.
|
[34] |
苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3):1384-1394.
|
[35] |
CLARK E L, HAHN C, JARAMILLO T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44):15848.
|
[36] |
HAMMER B, MORIKAWA Y, NØRSKOV J K. CO chemisorption at metal surfaces and overlayers[J]. Physical Review Letters, 1996, 76(12):2141-2144.
|
[37] |
LUDWIG A, KIBLER, AHMED M, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14):2080-2084.
|
[38] |
SANDBERG R B, MONTOYA J H, CHAN K, et al. CO-CO coupling on Cu facets:coverage, strain and field effects[J]. Surface Science, 2016, 654:56-62.
|
[39] |
KIM J J, SUMMERS D P, FRESE K W. Reduction of CO2 and CO to methane on Cu foil electrodes[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1988, 245(1/2):223-244.
|
[40] |
ISMAIL A M, SAMU G F, BALOG A, et al. Composition dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction[J]. ACS Energy Letters, 2018, 4(1):48-53.
|
[41] |
HE J F, DETTELBACH K E, HUANG A X, et al. Brass and bronze as effective CO2 reduction electrocatalysts[J]. Angewandte Chemie, 2017, 129(52):16579.
|
[42] |
HANDOKO A D, WEI F X, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12):922-934.
|
[43] |
WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4):910-918.
|
[44] |
CAI F, GAO D F, ZHOU H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 4(8):2569-2573.
|