Citation: | DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005 |
[1] |
吴凡,江皓,李叶青. 利用厌氧发酵技术合成中链羧酸的研究进展[J]. 环境工程,2021,39(8):150-155
,216.
|
[2] |
SPIRITO C M, MARZILLI A M, ANGENENT L T. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-Caprylate in a bioreactor with product extraction[J]. Environmental Science & Technology, 2018, 52(22):13438-13447.
|
[3] |
WU Q L, JIANG Y, CHEN Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass[J]. Bioresource Technology, 2021, 340:125633.
|
[4] |
ANDERSEN, S J, DE GROOF, V, KHOR, W C, et al. A clostridium group Ⅳ species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5:8.
|
[5] |
LIU Y H, LV F, SHAO L M, et al. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum[J]. Bioresource Technology, 2016, 218:1140-1150.
|
[6] |
VASUDEVAN D, RICHTER H, ANGENENT L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151:378-382.
|
[7] |
KHALID S, SHAHID M, MURTAZA B, et al. A critical review of different factors governing the fate of pesticides in soil under biochar application[J]. Science of the Total Environment, 2020, 711:134645.
|
[8] |
廖雨晴,KO Jaehac,袁土贵,等. 污泥基生物炭对餐厨垃圾厌氧消化产甲烷及微生物群落结构的影响[J]. 环境工程学报,2020,14(2):523-534.
|
[9] |
唐梦园,赵佳奇,邱春生,等. 生物炭理化特性及其对厌氧消化效率提升的研究进展[J]. 环境工程,2021,39(9):138-145.
|
[10] |
WEI Z, WANG J J, GASTON L A, et al. Remediation of crude oil-contaminated coastal marsh soil:integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application[J]. Journal of Hazardous Materials, 2020, 396:122595.
|
[11] |
WEI W, GUO W H, NGO H H, et al. Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar[J]. Bioresource Technology, 2020, 306:123159.
|
[12] |
INDREN M, BIRZER C H, KIDD SP, et al. Effects of biochar parent material and microbial pre-loading in biochar amended high-solids anaerobic digestion[J]. Bioresource Technology, 2020, 298:122457.
|
[13] |
ZHAI S M, LI M, XIONG Y H, et al. Dual resource utilization for tannery sludge:effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316:123903.
|
[14] |
LIU Y H, HE P J, SHAO L M, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119:150-159.
|
[15] |
LIU Y H, HE P J, HAN W H, et al. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar[J]. Renewable Energy, 2020, 161:230-239.
|
[16] |
LI X, CHEN Y G, ZHAO S, et al. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity[J]. Water Research, 2015, 70:148-157.
|
[17] |
LI X, ZHANG W J, XUE S L, et al. Enrichment of D-lactic acid from organic wastes catalyzed by zero-valent iron:an approach for sustainable lactate isomerization[J]. Green Chemistry, 2017, 19(4):869-1196.
|
[18] |
CROGNALE S, BRAGUGLIA C M, GALLIPOLI A, et al. Direct conversion of food waste extract into caproate:metagenomics assessment of chain elongation process[J]. Microorganisms, 2021, 9(2):327.
|
[19] |
AWASTHI M K, AWASTHI S K, WANG Q, et al. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting[J]. Bioresource Technology, 2018, 251:158-164.
|
[20] |
王欣, 尹带霞, 张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报, 2015, 31(4):248-257.
|
[21] |
吴清莲. 乙醇和乳酸引导的碳链增长技术生产中链羧酸的研究[D]. 哈尔滨:哈尔滨工业大学,2019.
|
[22] |
KUCEK L A, NGUYEN M, ANGENENT L T. Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93:163-171.
|
[23] |
COMA M, VILCHEZ-vargas R, ROUME H, et al. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation[J]. Environmental Science & Technology, 2016, 50(12):6467-6476.
|
[24] |
李旭升,鹿莎莎,江远琰,等. 生物炭缓解餐厨垃圾厌氧消化酸化的效果及机制[J]. 环境工程,2021,39(12):179-187.
|
[25] |
曹秀芹,刘丰,柴莲莲,等. 污泥生物炭制备与其对土壤环境影响的研究进展[J]. 环境工程,2022,40(3):203-211.
|
[26] |
SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8(1):14873.
|
[27] |
秦曦. 微生物电催化耦合磁铁矿负载型生物炭强化污泥厌氧消化机理研究[D]. 华东师范大学,2022.
|
[28] |
ZHANG L L, WANG K, YU L Y, et al. Why does sludge-based hydochar activate peroxydisulfate to remove atrazine more efficiently than pyrochar?[J]. Applied Catalysis B:Environmental, 2021, 299:120663.
|
[29] |
YUAN H Y, DING L J, ZAMA E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science & Technology, 2018, 52(21):12198-12207.
|
[30] |
XIAO X, CHEN B L, CHEN Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J]. Environmental Science & Technology, 2018, 52(9):5027-5047.
|
[31] |
WU S L, W W, XU Q X, et al. Revealing the mechanism of biochar enhancing the production of medium chain fatty acids from waste activated sludge alkaline fermentation liquor[J]. ACS ES&T Water, 2021, 1(4):1014-1024.
|
[32] |
CHEN Y,JIANG X,XIAO K,et al.Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase:investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112:261-268.
|
[33] |
郭志超,徐先宝,徐婷婷,等. 接种不同菌源的餐厨垃圾发酵代谢途径及产己酸效能分析[J]. 环境工程,2021,39(9):160-168.
|
[34] |
DONG W W, ZENG Y T, CUI Y X, et al. Unraveling the composition and succession of microbial community and its relationship to flavor substances during Xin-flavor baijiu brewing[J]. International Journal of Food Microbiology, 2022, 372:109679.
|
[35] |
KIM B C, SEUNG J B, KIM S, et al. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(12):4902-4908.
|
[36] |
ZHAO Z Q, WANG J F, Li Y, et al. Why do DIETers like drinking:metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171:115425.
|
[37] |
SHI Z J, CAMPANARO S, USMAN M, et al. Genome-Centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2021, 55(12):8351-8361.
|
[38] |
ZHU Z W, HU Y T, TEIXEIRA P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids[J]. Nature Catalysis, 2020, 3(1):64-74.
|