Citation: | ZENG Qian, NI Zhe, CHEN Jun, ZHEN Shengli, LIU Zejun, LIU Jianguo, QI Changqing. ORGANIC WASTE DIGESTATE: A REVIEW OF ITS CHARACTERISTICS AND RESOURCES RECOVERY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 61-70,78. doi: 10.13205/j.hjgc.202212009 |
[1] |
PRIMMER N. Biogas:Pathways to 2030[R],2021.
|
[2] |
张立,谢紫璇,曹丽斌,等.中国城市碳达峰评估方法初探[J].环境工程,2020,38(11):1-5
,43.
|
[3] |
王凯军, 王婧瑶, 左剑恶,等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J].环境工程学报,2020,14(7):1735-1742.
|
[4] |
GIWA A S, ALI N, AHMAD I, et al. Prospects of China's biogas:Fundamentals, challenges and considerations[J]. Energy Reports, 2020,6:2973-2987.
|
[5] |
CHEN T, QIU X, FENG H, et al. Solid digestate disposal strategies to reduce the environmental impact and energy consumption of food waste-based biogas systems[J]. Bioresource Technology, 2021,325:124706.
|
[6] |
国家发展和改革委员会, 住房和城乡建设部.关于印发《"十四五"城镇生活垃圾分类和处理设施发展规划》的通知[G].(2021-05-06)[生活垃圾分类].发改环资[2021] 642号.
|
[7] |
王洋. 餐厨垃圾厌氧发酵及沼渣资源化利用研究[D].哈尔滨:哈尔滨工业大学,2019.
|
[8] |
SERNA-MAZA A, HEAVEN S, BANKS C J. Biogas stripping of ammonia from fresh digestate from a food waste digester[J]. Bioresource Technology,2015,190:66-75.
|
[9] |
TAMPIO E, SALO T, RINTALA J. Agronomic characteristics of five different urban waste digestates[J]. Journal of Environmental Management,2016,169:293-302.
|
[10] |
SÁNCHEZ-RODRÍGUEZ A R, CARSWELL A M, SHAW R, et al.Advanced processing of food waste based digestate for mitigating nitrogen losses in a winter wheat crop[J]. Frontiers in Sustainable Food Systems,2018, 2:35.
|
[11] |
NICHOLSON F, BHOGAL A, CARDENAS L, et al. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land[J]. Environmental Pollution,2017, 228:504-516.
|
[12] |
BARZEE T J, EDALATI A, EL-MASHAD H, et al. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system[J]. Frontiers in Sustainable Food Systems, 2019,3:58.
|
[13] |
GRIGATTI M, BARBANTI L, HASSAN M U, Ciavatta C. Fertilizing potential and CO2 emissions following the utilization of fresh and composted food-waste anaerobic digestates[J]. Science of the Total Environment,2020,698:134198.
|
[14] |
OPATOKUN S A, KAN T, AL SHOAIBI A, et al.Characterization of food waste and its digestate as feedstock for thermochemical processing[J]. Energy & Fuels,2016,30(3):1589-1597.
|
[15] |
CHEONG J C, LEE J T, LIM J W, et al.Closing the food waste loop:food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa)[J]. Science of The Total Environment,2020, 715:136789.
|
[16] |
WANG X, WANG W, ZHOU B, et al. Improving solid-liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation[J]. Journal of Hazardous Materials, 2020,398:122989.
|
[17] |
BOROWSKI S, BONIECKI P, KUBACKI P, et al.Food waste co-digestion with slaughterhouse waste and sewage sludge:digestate conditioning and supernatant quality[J]. Waste Management,2018,74:158-167.
|
[18] |
BONI M R, DAMATO E, POLETTINI A, et al. Effect of ultrasonication on anaerobic degradability of solid waste digestate[J]. Waste Management, 2016, 48:209-217.
|
[19] |
LV F, LI T, WANG T, et al. Improvement of sludge digestate biodegradability by thermophilic bioaugmentation[J]. Applied Microbiology and Biotechnology, 2014, 98(2):969-977.
|
[20] |
PARMAR K R, ROSS A B. Integration of hydrothermal carbonisation with anaerobic digestion:opportunities for valorisation of digestate[J]. Energies, 2019,12(9):1586.
|
[21] |
RÉKÁSI M, MAZSU N, DRASKOVITS E, et al. Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate[J]. Bioresource Technology,2019, 291:121861.
|
[22] |
CHINI A, BOLSAN A C, HOLLAS C E, et al. Evaluation of deammonification reactor performance and microrganisms community during treatment of digestate from swine sludge CSTR biodigester[J]. Journal of Environmental Management,2019, 246:19-26.
|
[23] |
MARIN-Batista J D, MOHEDANO A F, RODRÍGUEZ J J, et al. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge[J]. Waste Management,2020,105:566-574.
|
[24] |
GIELNIK A, PECHAUD Y, HUGUENOT D, et al. Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil[J]. Journal of Environmental Management, 2021,280:111648.
|
[25] |
TEGLIA C, TREMIER A, MARTEL J L. Characterization of solid digestates:part 2, assessment of the quality and suitability for composting of six digested products[J]. Waste and Biomass Valorization, 2011,2(2):113-126.
|
[26] |
ALBURQUERQUE J A, de la Fuente C, CAMPOY M, et al. Agricultural use of digestate for horticultural crop production and improvement of soil properties[J]. European Journal of Agronomy,2012, 43:119-128.
|
[27] |
CAO W, WANG M, LIU M, et al. The chemical and dynamic distribution characteristics of iron, cobalt and nickel in three different anaerobic digestates:effect of pH and trace elements dosage[J]. Bioresource Technology, 2018,269:363-374.
|
[28] |
LI Y, HAN Y, ZHANG Y, et al. Factors affecting gaseous emissions, maturity, and energy efficiency in composting of livestock manure digestate[J]. Science of the Total Environment,2020,731:139157.
|
[29] |
SKIC K, SOKOȽOWSKA Z, BOGUTA P, et al. The effect of application of digestate and agro-food industry sludges on Dystric Cambisol porosity[J]. Plos One, 2020,15(9):0238469.
|
[30] |
SERRANO A, WYN H, DUPONT L, et al. Self-sustaining treatment as a novel alternative for the stabilization of anaerobic digestate[J]. Journal of Environmental Management,2020,264:110544.
|
[31] |
ARAB G, MCCARTNEY D. Benefits to decomposition rates when using digestate as compost co-feedstock:part Ⅰ-Focus on physicochemical parameters[J]. Waste Management,2017,68:74-84.
|
[32] |
ZENG Y, DE GUARDIA A, DABERT P. Improving composting as a post-treatment of anaerobic digestate[J]. Bioresource Technology,2016,201:293-303.
|
[33] |
GARCÍA-ALBACETE M, TARQUIS A M,CARTAGENA M C. Risk of leaching in soils amended by compost and digestate from municipal solid waste[J]. The Scientific World Journal,2014.
|
[34] |
CERDA A, MEJIAS L, RODRÍGUEZ P, et al. Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts:a first approach[J]. Bioresource Technology,2019,271:409-416.
|
[35] |
BEGGIO G, SCHIEVANO A, BONATO T, et al.Statistical analysis for the quality assessment of digestates from separately collected organic fraction of municipal solid waste (OFMSW) and agro-industrial feedstock. Should input feedstock to anaerobic digestion determine the legal status of digestate?[J]. Waste Management, 2019,87:546-558.
|
[36] |
谢雨呈, 谭长银, 张朝, 等. 典型肥料生产场地氨氮分布特征及风险控制目标确定[J]. 环境科学研究, 2019, 32(3):465-474.
|
[37] |
张强,朱政豫,李咏梅. 污泥厌氧消化过程中磷行为的数学模型研究进展[J].环境污染与防治,2019,41(6):726.
|
[38] |
中华人民共和国农业农村部. 有机肥料:NY/T 525-2021[S].2021.
|
[39] |
国家市场监督管理总局,中国国家标准化管理委员会. 农用污泥污染物控制标准:GB 4284-2018[S].北京:中国标准出版社,2018.
|
[40] |
FALCONER R E, HALTAS I, VARGA L, et al. Anaerobic Digestion of food waste:eliciting sustainable water-energy-food nexus practices with Agent Based Modelling and visual analytics[J]. Journal of Cleaner Production,2020,255:120060.
|
[41] |
SCARLAT N, DALLEMAND J F, FAHL F. Biogas:developments and perspectives in Europe[J]. Renewable Energy, 2018,129:457-472.
|
[42] |
OGUNMAKINDE O E. A review of circular economy development models in China, Germany and Japan[J]. Recycling, 2019,4(3):27.
|
[43] |
毕珠洁, 邰俊, 许碧君. 中国餐厨垃圾管理现状研究[J]. 环境工程, 2016, 34(增刊1):765-768.
|
[44] |
邴君妍,罗恩华,金宜英,等.我国餐厨废弃物厌氧消化技术的物质流分析[J].环境工程,2018,36(8):130-133.
|
[45] |
李骞,聂曦,黄维,等. 餐饮垃圾处理技术现状和问题初析[C]//2019中国环境科学学会科学技术年会论文集(第二卷),2019:1123-1129.
|
[46] |
安晓霞,金文涛.杭州天子岭厨余垃圾处理工程实例分析[J].绿色科技,2019(8):125-128.
|
[47] |
郭晓旻. 郑州市餐厨厨余垃圾处理工程项目工艺设计[D].郑州:河南工业大学,2015.
|
[48] |
GLORIA T, KATRIN K, TRISTAN G, IBBK Fachgruppe Biogas GmbH. Risk Assessment of Nutrient Discharges from Biogas Production[R].
|
[49] |
SCHNELL M, HORST T, QUICKER P. Thermal treatment of sewage sludge in Germany:a review[J]. Journal of Environmental Management, 2020, 263:110367.
|
[50] |
HERZEL H, KRVGER O, HERMANN L, et al. Sewage sludge ash:a promising secondary phosphorus source for fertilizer production[J]. Science of the Total Environment, 2016,542:1136-1143.
|
[51] |
WEI L, ZHU F, LI Q, et al. Development, current state and future trends of sludge management in China:based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International, 2020,144:106093.
|
[52] |
戴晓虎.我国污泥处理处置现状及发展趋势[J].科学,2020,72(6):30-34
,4.
|
[53] |
刘刈,郑丹,王兰,等. 畜禽粪污处理沼气工程现状调研及问题分析[C]//第十二届(2014)中国猪业发展大会论文集,2014:97-103.
|
[54] |
张国治,吴少斌,王焕玲,等.大中型沼气工程沼渣沼液利用意愿现状调研及问题分析[J].中国沼气,2010,28(1):21-24.
|
[55] |
VIELHABER B. Mechanical-Biological Treatment Plant in Hanover[J]. Mechanical-Biological Treatment, 2015,1:387-398.
|
[56] |
DI LONARDO M C, LOMBARDI F, GAVASCI R. Characterization of MBT plants input and outputs:a review[J]. Reviews in Environmental Science and Biotechnology, 2012,11(4):353-363.
|
[57] |
SAWADA K, TOYOTA K. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification[J]. Microbes and Environments, 2015,1:14080.
|
[58] |
国家发展和改革委员会,农业部.关于印发《全国农村沼气发展"十三五"规划》的通知[G].(2017-01-25)[农村沼气].发改农经
|
[59] |
BERGLUND M, BÖRJESSON P. Assessment of energy performance in the life-cycle of biogas production[J]. Biomass and Bioenergy, 2006,30(3):254-266.
|
[60] |
中国人民共和国国土资源部. 2016中国国土资源公报[R]. 2017,http://www.gov.cn/shuju/2017-05
/04/5190904/files/c1e7f8c031f940afa330756645d6b638.pdf.
|
[61] |
HERBES C, ROTH U, WULF S. Economic assessment of different biogas digestate processing technologies:a scenario-based analysis[J]. Journal of Cleaner Production, 2020,255:120282.
|
[62] |
DAHLIN J, HERBES C,NELLES M. Biogas digestate marketing:qualitative insights into the supply side[J]. Resources, Conservation and Recycling, 2015,104:152-161.
|
[63] |
杨德坤,白力.静脉产业园餐厨垃圾处理厂与焚烧厂协同处理运行实例和经济性分析[J].上海电力大学学报,2021,37(2):179-184.
|
[64] |
杨新海.污泥协同焚烧技术发展的探讨与行业思考[J].净水技术,2018,37(11):1-3
,39.
|
[65] |
WANG W, LEE D J. Valorization of anaerobic digestion digestate:a prospect review[J]. Bioresource Technology,2020:124626.
|
[66] |
WANG T, ZHAI Y, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation:process conditions, fundamentals, and physicochemical properties[J]. Renewable and Sustainable Energy Reviews,2018, 90:223-247.
|
[67] |
刘亦陶,魏佳,李军.废弃生物质水热炭化技术及其产物在废水处理中的应用进展[J].化学与生物工程,2019,36(1):1-10.
|
[68] |
WIRTH B, EBERHARDT G, LOTZE-Campen H, et al.Hydrothermal carbonization:influence of plant capacity, feedstock choice and location on product cost[C]. In Proceedings of 19th European Biomass Conference & Exhibition, Berlin, Germany 2011:2001-2010.
|
[69] |
SUWELACK K, DOSTERT N, WVST D, et al. Economics of hydrothermal carbonization of biogas digestate in a hybrid AD-HTC plant[C]. In EUBCE, 24th European Conference.2016,10.
|
[70] |
JEWELL W J, CUMMINGS R J. Apple pomace energy and solids recovery[J]. Journal of Food Science,1984, 49(2):407-410.
|
[71] |
WINKLER M K, BENNENBROEK M H, HORSTINK F H, et al. The biodrying concept:an innovative technology creating energy from sewage sludge[J]. Bioresource Technology, 2013,147:124-129.
|
[72] |
XIN L, LI X, BI F, et al. Accelerating food waste composting course with biodrying and maturity process:a pilot study[J]. Sustainable Chemistry & Engineering,2020, 9(1):224-235.
|
[73] |
LIU Z, TAN X, WANG Y, et al. Effect of temperature and bulking agents on deep bio-drying of high-solid anaerobically digested sludge[J]. Drying Technology,2020, 38(14):1904-1914.
|
[74] |
LI X, DAI X, YUAN S, et al. Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process[J]. Bioresource Technology,2015,175:245-253.
|
[75] |
郭松林,陈同斌,高定,等.城市污泥生物干化的研究进展与展望[J].中国给水排水,2010,26(15):102-105.
|
[76] |
https://ym-sanyuu.co.jp/home/ym-bacteria/[G/OL].
|
[77] |
余震,周顺桂.超高温好氧发酵技术:堆肥快速腐熟与污染控制机制[J].南京农业大学学报,2020,43(5):781-789.
|
[78] |
王新杰,郁昂,黄韦辰,等.超高温好氧堆肥技术对隔离区餐厨垃圾处理的应用可行性分析[J].厦门大学学报·自然科学版,2020,59(3):354-359.
|
[79] |
SURENDRA K C, TOMBERLIN J K, VAN HUIS A, et al. Rethinking organic wastes bioconversion:evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera:Stratiomyidae)(BSF)[J]. Waste Management,2020,117:58-80.
|
[80] |
LALANDER C, DIENER S, ZURBRVGG C, et al. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens)[J]. Journal of Cleaner Production, 2019,208:211-219.
|
[81] |
General Food Law Regulation. Regulation (EC) No 178/2002[S].
|
[82] |
REHL T,MVLLER J. Life cycle assessment of biogas digestate processing technologies[J]. Resources, Conservation and Recycling, 2011,56(1):92-104.
|
[83] |
MØLLER J, BOLDRIN A,CHRISTENSEN T H. Anaerobic digestion and digestate use:accounting of greenhouse gases and global warming contribution[J]. Waste Management & Research,2009, 27(8):813-824.
|
[84] |
GARDONI D, GUARINO M. Drying and combustion of an anaerobic digestate:results and economical evaluation of a demonstrative-scale plant[J]. International Journal of Engineering Resources and Science,2016,2:148-155.
|
[85] |
MERTENAT A, DIENER S, ZURBRVGG C. Black soldier fly biowaste treatment-Assessment of global warming potential[J]. Waste Management,2019, 84:173-181.
|
[2017] |
178号.
|