Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DONG Xinlei, LIN Qingshan, LIN Yanan, XI Shihao, CHENG Boyi, CHEN Lei, ZHANG Da, WANG Zongping, GUO Gang. EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 71-78. doi: 10.13205/j.hjgc.202212010
Citation: DONG Xinlei, LIN Qingshan, LIN Yanan, XI Shihao, CHENG Boyi, CHEN Lei, ZHANG Da, WANG Zongping, GUO Gang. EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 71-78. doi: 10.13205/j.hjgc.202212010

EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT

doi: 10.13205/j.hjgc.202212010
  • Received Date: 2022-03-19
    Available Online: 2023-03-23
  • Anaerobic fermentation (AF) of waste activated sludge (WAS) via electrochemical pretreatment (EPT) is a practical, effective and cost-saving protocol for volatile fatty acids (VFAs) production. However, AF performance is significantly affected by the different electrolytes during EPT. This study aimed to investigate the effects of different types of electrolytes (Control, NaCl, Na2SO4 and CaCl2) on VFAs production from AF of WAS via EPT with a current intensity at 1 A for 60 min. The results showed that by using 0.05 mol/L NaCl as the electrolyte during EPT, the amount of organic matter released from WAS, such as soluble COD, glycogen, protein etc., was the highest compared to other electrolytes. Thus the maximal VFAs accumulation during AF via EPT by using NaCl as the electrolyte reached 2625.8 mg COD/L, which was 51.6% higher than that of the control. These results indicated that EPT with NaCl as the electrolyte could effectively improve the hydrolysis of WAS, increase the amount of organic matter released from WAS and promote the enrichment of anaerobic fermentative bacteria (such as Firmicutes and Bacteroidetes). All of these subsequently promoted the AF of WAS and thus increased VFAs production, which in turn enhanced the resource recovery from WAS treatment.
  • [1]
    SEGGIANI M, VITOLO S, PUCCINI M, et al. Cogasification of sewage sludge in an updraft gasifier[J]. Fuel, 2012,93:486-491.
    [2]
    刘鑫, 惠秀娟, 唐凤德. 我国典型城市污泥产生量处理处置现状及经济学趋势分析[J]. 环境保护与循环经济, 2021,41(4):88-93.
    [3]
    LIANG T, ELMAADAWY K, LIU B, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production:recent updates of pretreatment methods and the potential effect of humic and nutrients substances[J]. Process Safety and Environmental Protection, 2021,145:321-339.
    [4]
    刘长青, 薛珊, 金秋燕, 等. 餐厨垃圾与市政污泥混合比对共厌氧消化性能的影响[J]. 中国沼气, 2018,36(2):48-51.
    [5]
    魏玉莲, 叶京, 杨玮晴, 等. 热、碱预处理对厨余垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 广东化工, 2021,48(15):183-185.
    [6]
    柯壹红, 曾艺芳, 李华藩, 等. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020,38(8):21-26.
    [7]
    章涛. 超声波预处理耦合技术改善污泥厌氧发酵产酸的研究[D]. 苏州:苏州科技学院, 2015.
    [8]
    王羚. 化学预处理对微生物电解促进污泥厌氧发酵工艺影响研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
    [9]
    李宵宵, 吴丽杰, 任瑞鹏, 等. 高含固污泥厌氧消化处理技术研究进展[J]. 现代化工, 2020,40(8):21-25.
    [10]
    何永全, 曾祖刚, 黄安寿. 餐厨垃圾和市政污泥联合高温厌氧消化产沼气研究[J]. 四川环境, 2018,37(3):28-32.
    [11]
    任贺. 剩余污泥的电解预处理效能研究[D]. 长春:吉林建筑大学, 2014.
    [12]
    毛彦俊. 剩余污泥电化学含氯漂白技术研究[D]. 大连:大连交通大学, 2012.
    [13]
    ZHANG D, JIANG H, CHANG J, et al. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production[J]. Bioresource Technology, 2019,279:99-102.
    [14]
    隋志男, 郅二铨, 姚杰, 等. 三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报, 2015,5(2):114-120.
    [15]
    MASIHI H, BADALIANS GHOLIKANDI G. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge:a novel approach[J]. Water Research, 2018,144:373-382.
    [16]
    H L O, J R N, L F A, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry, 1951,193(1):265-75.
    [17]
    DUBOIS M, GILLES K, HAMILTON J K, et al. A colorimetric method for the determination of sugars[J]. Nature, 1951,168:167.
    [18]
    宋亚梦, 卢静芳, 苑宏英, 等. 含氯氧化剂对污泥水解性能的影响研究[J]. 环境科学与技术, 2018,41(10):82-86.
    [19]
    CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter[J]. Environmental Science & Technology, 2003,37(24):5701-5710.
    [20]
    WU J, YANG Q, LUO W, et al. Role of free nitrous acid in the pretreatment of waste activated sludge:extracellular polymeric substances disruption or cells lysis?[J]. Chemical Engineering Journal, 2018,336:28-37.
    [21]
    ERKAN H S, ENGIN G O. A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants[J]. Journal of Environmental Chemical Engineering, 2020,8(4).
    [22]
    尹利鹏. 剩余活性污泥快速降解及产酸研究[D]. 阜新:辽宁工程技术大学, 2019.
    [23]
    ZHEN G, LU X, LI Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion[J]. Applied Energy, 2014,128:93-102.
    [24]
    叶彩虹. 电化学预处理改善污泥厌氧消化性能的研究[D]. 上海:上海交通大学, 2017.
    [25]
    XU Y, ZHENG L, GENG H, et al. Enhancing acidogenic fermentation of waste activated sludge via isoelectric-point pretreatment:Insights from physical structure and interfacial thermodynamics[J]. Water Research, 2020,185:116237.
    [26]
    李冬娜, 马晓军. 污泥厌氧发酵产酸机理及应用研究进展[J]. 生物质化学工程, 2020,54(2):51-60.
    [27]
    XIAONAN Z, YU L, LIU H, et al. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste[J]. Bioresource Technology, 2021,336:125338.
    [28]
    BENYAN L, ZIYUAN X, MIN G, et al. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates:performance and microbial community characteristics[J]. Bioresource technology, 2021,346:126448.
    [29]
    XING B, HAN Y, WANG X C, et al. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation[J]. Science of The Total Environment, 2020,715:136529.
    [30]
    郝晓地, 陈峤, 刘然彬. Tetrasphaera聚磷菌研究进展及其除磷能力辨析[J]. 环境科学学报, 2020,40(3):741-753.
    [31]
    JINSONG L, HAIBO Z, PANYUE Z, et al. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum:hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure[J]. Waste Management, 2021,124:235-245.
    [32]
    梁英. 炼厂剩余活性污泥的水解酸化实验研究[D]. 北京:中国石油大学(北京), 2017.
    [33]
    WATERS J L, LEY R E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health[J]. BMC Biology, 2019,17(1):88.
    [34]
    LAWSON PAUL A. 梭菌属分类研究进展:现状和展望(英文)[J]. 微生物学通报, 2016,43(5):1070-1074.
  • Relative Articles

    [1]PAN Kanghong, MING Leiqiang, GAO Pei, WANG Xudong, LI Xianguo, ZHANG Dahai. SYNERGETIC PRETREATMENT OF EXCESS SLUDGE BY ENHANCING SLUDGE LYSIS BY HYDRODYNAMIC CAVITATION COMBINED WITH OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 126-134. doi: 10.13205/j.hjgc.202401017
    [2]PU Yitao, YANG Ruyue, XU Yirong, KE Shuizhou, WANG Xiaodong, GAO Jingsi, XIAO Kang. RESEARCH PROGRESS ON EFFECTS OF MICROPLASTICS ON EXCESS SLUDGE AND THEIR DEGRADATION PATHWAYS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 48-56. doi: 10.13205/j.hjgc.202402006
    [3]CUI Tiantian, ZHOU Jiti, JIN Ruofei, LI Xin. TREATMENT OF SULFATE WASTEWATER BY SULFATE-REDUCING BACTERIA WITH RESIDUAL SLUDGE THERMAL ALKALINE-HYDROLYSATE AS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 23-31. doi: 10.13205/j.hjgc.202402003
    [4]WANG Jinghui, LIU Lu, ZHENG Chengzhi, CHEN Yifan, GUO Ze. ADVANCEMENTS IN PROCESS SIMULATION OF ANAEROBIC FERMENTATION HYDROGEN PRODUCTION FROM SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017
    [5]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [6]ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015
    [7]DONG Wenyi, DU Hong, ZENG Yuanxin, HUANG Xiao, WANG Hongjie, DAI Zhongyi. REVIEW OF PRETREATMENT PROCESS FOR MUNICIPAL SLUDGE FERMENTATION FOR PRODUCING VOLATILE FATTY ACIDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 241-251. doi: 10.13205/j.hjgc.202307033
    [8]ZHENG Xiaoying, YANG Shanshan, YANG Mengmeng, ZHAO Zhilin, ZHANG Huijie, HAN Zongshuo, ZHOU Chao. INTERACTION BETWEEN ANAEROBIC FERMENTATION OF WASTE ACTIVATED SLUDGE AND MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 92-100. doi: 10.13205/j.hjgc.202304013
    [9]GENG Ziqian, DAI Wenting, LI Chao, TANG Jie, DAI Kun, CENG Jianxiong, ZHANG Fang. ENHANCED METHANOGENESIS OF WASTE ACTIVATED SLUDGE FERMENTATION BY DOSING AN ALGINATE-DEGRADING CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 90-95. doi: 10.13205/j.hjgc.202208012
    [10]TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031
    [11]XU Hui-ting, LIU Hui, MA Zhang-wen, CHEN Hao, ZHU Zhi-hao, XU Tian-chen, YE Jian-feng. EFFECTS OF ALKALI TREATMENT ON METHANE AND INTERMEDIATE AMINO ACIDS AND THEIR CORRELATION DURING ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 88-94. doi: 10.13205/j.hjgc.202205013
    [12]LIU Xin-yuan, HU Wen-jia, OUYANG Fan, NIE Jia-min, WU Nan, YANG Fan, KONG Si-fang. BIOGAS PRODUCTION AND MICROBIAL COMMUNITY SUCCESSION DURING SEQUENCING BATCH ACCLIMATIZATION OF DIGESTED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 136-141,188. doi: 10.13205/j.hjgc.202103019
    [13]ZHOU Yu-qi, XU Jun-chao, ZHUO Gui-hua, CHEN Jian-yong, LIU Chang-qing. INFLUENCE OF SLUDGE INOCULATION VOLUME ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE UNDER MEDIUM TEMPERATURE CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 144-149. doi: 10.13205/j.hjgc.202106021
    [14]SUN Xing, HU Kai, LEI Chen-yu, CHEN Wei. EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023
    [15]CHEN Si-yuan, XIAO Xiang-zhe, TENG Jun, DONG Shan-yan, LIAN Jun-feng, ZHU Yi-chun. RESEARCH PROGRESS ON METHANOGENIC INHIBITION TECHNOLOGY DURING ANAEROBIC DIGESTION OF EXCESS SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 137-143. doi: 10.13205/j.hjgc.202106020
    [16]CHEN Yi-shuang, WEI Tao-yuan, ZHOU Tao, DONG Ding-shuo, LIN Qing-shan, WANG Zong-ping, GUO Gang. EFFECT OF ELECTROCHEMICAL PRETREATMENT ON PRODUCTION OF VOLATILE FATTY ACIDS BY CO-ANAEROBIC FERMENTION OF FOOD WASTE AND SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 187-192. doi: 10.13205/j.hjgc.202109026
    [17]ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
    [18]QIN Yan, XING Yi, ZHANG Li-guo, HONG Chen, HU Jia-shuo, LI Zai-xing, FENG Li-hui, ZHANG Ze, ZHAO Hong-jun, MENG Jie. RESEARCH PROGRESS ON RESIDUAL SLUDGE DEPTH DRYING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 154-161. doi: 10.13205/j.hjgc.202003026
    [19]ZHANG Jian-wei, HUANG Tao, PENG Dao-ping, JIANG Shuai, XIA Yu-yang. GAS PRODUCTION PERFORMANCE OF RICE STRAW ANAEROBIC FERMENTATION BY CRYOGENIC FREEZING PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 217-221. doi: 10.13205/j.hjgc.202008036
    [20]ZHANG Jing, ZHAO Jian-wei, SUN Ying-jie, WANG Ya-nan, XIN Ming-xue. EFFECT OF EMERGING POLLUTANTS ON PRODUCTION OF HYDROGEN FROM WASTE ACTIVATED SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 13-20. doi: 10.13205/j.hjgc.202008003
  • Cited by

    Periodical cited type(1)

    1. 苗露元,姜野,颜廷春,沈玥希,王斯怡,权跃. 响应面法优化电化学氧化处理氯苯废气的研究. 环境工程. 2024(08): 97-104 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.6 %FULLTEXT: 17.6 %META: 81.3 %META: 81.3 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.9 %其他: 17.9 %其他: 0.8 %其他: 0.8 %San Lorenzo: 0.3 %San Lorenzo: 0.3 %上海: 3.3 %上海: 3.3 %东莞: 2.0 %东莞: 2.0 %临汾: 0.3 %临汾: 0.3 %北京: 3.1 %北京: 3.1 %十堰: 0.3 %十堰: 0.3 %南京: 1.3 %南京: 1.3 %南宁: 0.3 %南宁: 0.3 %南通: 0.5 %南通: 0.5 %台州: 0.8 %台州: 0.8 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 1.3 %哈尔滨: 1.3 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 1.8 %天津: 1.8 %太原: 0.5 %太原: 0.5 %宣城: 0.8 %宣城: 0.8 %密蘇里城: 0.8 %密蘇里城: 0.8 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广安: 0.5 %广安: 0.5 %广州: 1.5 %广州: 1.5 %廊坊: 0.3 %廊坊: 0.3 %张家口: 0.5 %张家口: 0.5 %徐州: 0.3 %徐州: 0.3 %成都: 0.8 %成都: 0.8 %扬州: 0.3 %扬州: 0.3 %无锡: 0.8 %无锡: 0.8 %昆明: 2.6 %昆明: 2.6 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.8 %杭州: 0.8 %武汉: 2.0 %武汉: 2.0 %济源: 0.3 %济源: 0.3 %海口: 0.3 %海口: 0.3 %温州: 0.8 %温州: 0.8 %漯河: 4.6 %漯河: 4.6 %潮州: 0.8 %潮州: 0.8 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.8 %福州: 0.8 %芒廷维尤: 26.3 %芒廷维尤: 26.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %蚌埠: 0.3 %蚌埠: 0.3 %衢州: 0.5 %衢州: 0.5 %西宁: 7.9 %西宁: 7.9 %西安: 0.5 %西安: 0.5 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.0 %运城: 2.0 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.3 %鄂州: 0.3 %重庆: 2.0 %重庆: 2.0 %金华: 0.8 %金华: 0.8 %长沙: 0.5 %长沙: 0.5 %青岛: 0.3 %青岛: 0.3 %黄石: 0.3 %黄石: 0.3 %其他其他San Lorenzo上海东莞临汾北京十堰南京南宁南通台州合肥哈尔滨嘉兴天津太原宣城密蘇里城常州常德广安广州廊坊张家口徐州成都扬州无锡昆明晋城朝阳杭州武汉济源海口温州漯河潮州石家庄福州芒廷维尤芝加哥苏州蚌埠衢州西宁西安贵阳运城遵义郑州鄂州重庆金华长沙青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (317) PDF downloads(4) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return