Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 40 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
Citation: ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020

A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL

doi: 10.13205/j.hjgc.202212020
  • Received Date: 2022-03-28
    Available Online: 2023-03-23
  • To explore the path to carbon emission peaking of Henan, China and meet the strategic need of the local authorities, in this paper, the data of twelve factors of social, economic, energy consumption, and resources in Henan from 2001 to 2020 were selected, and the Lasso-BP neural network method was used to establish a prediction model of carbon emission in Henan province. Based on the regression analysis of the data of the 12 indexes, six different development paths were designed to predict the carbon emission of Henan from 2021 to 2035. The results showed that: 1) among the twelve factors, six key factors affecting carbon peaking were the share of coal consumption, energy consumption per unit of GDP, forest coverage, total energy consumption, the share of secondary industry GDP, and private car ownership; 2) paths 1 to 4 pursuing single-factor development were all unable to achieve carbon peaking in 2030. Under paths 5 and 6, Henan would reach peak carbon in 2029. Compared with path 5, the peak CO2 emission of path 6 was 2.53 Mt lower, with a peak of 510.91 Mt CO2; 3) to achieve the carbon emission peak, the average annual growth rates of coal consumption, energy consumption per unit of GDP, forest coverage, total energy consumption, the share of secondary industry in GDP, and private car ownership should be controlled at -4.0% and -5.0%, -3.5% and -4.0%, 2.0% and 3.0%, 0.5% and 0.4%, -1.5% and -2.0%,7.5% and 7.0%, during the 14th Five-Year Plan and the 15th Five-Year Plan Period respectively.
  • loading
  • [1]
    薛成杰,方战强.土壤修复产业碳达峰碳中和路径研究[J/OL].环境工程:1-10[2022-06-06

    ].http://kns.cnki.net/kcms/detail/11.2097.X.20220209.1734.010.html.
    [2]
    MARGARETE R, THOMAS G.Anthropogenic climate change:the impact of the global carbon budget[J]. Theoretical and Applied Climatology,2021,146(1/2):713-721.
    [3]
    渠慎宁,郭朝先.基于STIRPAT模型的中国碳排放峰值预测研究[J].中国人口·资源与环境,2010,20(12):10-15.
    [4]
    陆玉玲.基于GIOWA算子的我国碳排放量的组合预测研究[J].黑龙江工业学院学报(综合版),2020,20(4):108-114.
    [5]
    徐夏楠,王莹.河南省工业领域碳排放峰值研究[J].当代经济,2018(19):84-88.
    [6]
    张志高,刘青利,张翠贞,等.河南省农业碳排放动态变化及预测研究[J].南方农业,2017,11(22):24-28.
    [7]
    孙晓林,张伟强,杜敬华,等.碳中和愿景下的河南资源环境领域科技发展战略[J].能源与环保,2021,43(6):1-8.
    [8]
    刘晓蝶,孟祥瑞,王向前.基于Lasso-BP神经网络模型的江苏省碳排放预测[J].黑龙江工业学院学报(综合版),2021,21(8):60-65.
    [9]
    雷廷,贾军元,田福金,等.基于BP神经网络预测岩石导热系数[J].世界地质,2021,40(1):131-139.
    [10]
    陈红瑜,崔刚. 《河南统计年鉴-2021》[M]. 北京:中国统计出版社,2021,5-6.
    [11]
    付凌晖,刘爱华. 《中国统计年鉴-2021》[M]. 北京:中国统计出版社,2021,4-5.
    [12]
    关大博,刘竹,单钰理,等. Carbon emission accounts & datasets.CEADs中国碳核算数据库:河南省排放清单[EB/OL].(2020-11-03)[2021-06-28].http://www.ceads.net.cn.
    [13]
    熊彦,康伦慧,石卉.循环经济在生态环境保护中的作用[J].环境工程,2021,39(5):281.
    [14]
    熊星月,李喜梅,何静,等.河南省森林旅游资源保护及利用策略研究[J].黑龙江农业科学,2021(4):119-124.
    [15]
    郭利华,李立伟,石志隆,等.河南省森林资源发展空间及潜力分析[J].河南林业科技,2017,37(4):43-45.
    [16]
    王俊娟.河南省碳排放、能源消费及影响因素研究:基于产业结构优化的实证分析[J].经济研究导刊,2022(12):134-137.
    [17]
    侯正猛,熊鹰,刘建华,等.河南省碳达峰与碳中和战略、技术路线和行动方案[J].工程科学与技术,2022,54(1):23-36.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (275) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return