Citation: | GUO Yun, LI Zhouyan, WANG Zhiwei. RESEARCH PROGRESS OF ELECTROCHEMICAL MEMBRANE FILTRATION FOR WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 253-269. doi: 10.13205/j.hjgc.202212034 |
[1] |
BAO L J, MARUYA K A, SNYDER S A, et al. China's water pollution by persistent organic pollutants[J]. Environmental Pollution, 2012, 163:100-108.
|
[2] |
VASSEGHIAN Y, HOSSEINZADEH S, KHATAEE A, et al. The concentration of persistent organic pollutants in water resources:a global systematic review, meta-analysis and probabilistic risk assessment[J]. Science of the Total Environment, 2021, 796:149000.
|
[3] |
WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5).
|
[4] |
LEE A, ELAM J W, DARLING S B. Membrane materials for water purification:design, development, and application[J]. Environmental Science:Water Research & Technology, 2016, 2(1):17-42.
|
[5] |
PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6):1946.
|
[6] |
PAN Z L, SONG C W, LI L, et al. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment:recent advances and future prospects[J]. Chemical Engineering Journal, 2019, 376:120909.
|
[7] |
WANG X Y, LI F X, HU X M, et al. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues:a review on its potential applications, advances, and challenges[J]. Science of the Total Environment, 2021, 784:146912.
|
[8] |
WEI K J, CUI T, HUANG F, et al. Membrane separation coupled with electrochemical advanced oxidation processes for organic wastewater treatment:a short review[J]. Membranes (Basel), 2020, 10(11):337.
|
[9] |
FAN X F, ZHAO H M, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88:285-292.
|
[10] |
FAN X F, ZHAO H M, LIU Y M, et al. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance[J]. Environmental Science & Technology, 2015, 49(4):2293-2300.
|
[11] |
WANG K P, XU L L, LI K L, et al. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation[J]. Journal of Membrane Science, 2019, 570/571:371-379.
|
[12] |
ALMASSI S, LI Z, XU W Q, et al. Simultaneous adsorption and electrochemical reduction of n-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2019, 53(2):928-937.
|
[13] |
SUN M, WANG X X, WINTER L R, et al. Electrified membranes for watertreatment applications[J]. ACS ES&T Engineering, 2021, 1(4):725-752.
|
[14] |
SHI H H, WANG Y Y, LI C G, et al. Degradation of perfluorooctanesulfonate by a reactive electrochemical membrane composed of magneli phase titanium suboxide[J]. Environmental Science & Technology, 2019, 53(24):14528-14537.
|
[15] |
LI L, WANG Y, HUANG Q. First-principles study of the degradation of perfluorooctanesulfonate and perfluorobutanesulfonate on a magnéli phase Ti4O7 anode[J]. ACS ES&T Water, 2021, 1(8):1737-1744.
|
[16] |
PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12):6541-6569.
|
[17] |
WANG X X, SUN M, ZHAO Y M, et al. In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning[J]. Environmental Science & Technology, 2020, 54(11):6997-7007.
|
[18] |
ZHOU M, LIU L, JIAO Y L, et al. Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes[J]. Desalination, 2011, 277(1):201-206.
|
[19] |
JAYSON G G, PARSONS B, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter[J]. 1973. DOI: 10.1039/f19736901597.
|
[20] |
MARTÍNEZ-Huitle C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants:a critical review[J]. Chemical Reviews, 2015, 115(24):13362-407.
|
[21] |
POLCARO A M, VACCA A, MASCIA M, et al. Electrochemical treatment of waters with BDD anodes:kinetics of the reactions involving chlorides[J]. Journal of Applied Electrochemistry, 2009, 39(11):2083-2092.
|
[22] |
LIU Y B, LIU F Q, DING N, et al. Boosting Cr(Ⅵ) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline:performance and mechanism[J]. Science of the Total Environment, 2019, 695:133926.
|
[23] |
LI J Y, MA J X, DAI R B, et al. Self-enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system[J]. Environmental Science & Technology, 2021, 55(1):655-664.
|
[24] |
BRYLEV O, SARRAZIN M, ROUÉ L, et al. Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes[J]. Electrochimica Acta, 2007, 52(21):6237-6247.
|
[25] |
ZHAO Z H, TONG G H, TAN X. Nitrite removal from water by catalytic hydrogenation in a Pd-CNTs/Al2O3 hollow fiber membrane reactor[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(8):2298-2304.
|
[26] |
GAYEN P, SPATARO J, AVASARALA S, et al. Electrocatalytic reduction of nitrate using magneli phase TiO2 reactive electrochemical membranes doped with Pd-Based catalysts[J]. Environmental Science & Technology, 2018, 52(16):9370-9379.
|
[27] |
ALMASAAI S, SAMONTE P R V, LI Z, et al. Mechanistic investigation of haloacetic acid reduction using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2020, 54(3):1982-1991.
|
[28] |
LEE J Y, LEE J G, LEE S H, et al. Hydrogen-atom-mediated electrochemistry[J]. Nature Communications, 2013, 4:2766.
|
[29] |
LI Y, MA J, WAITE T D, et al. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2:mechanisms and implications[J]. Environmental Science & Technology, 2021, 55(15):10695-10703.
|
[30] |
MAI R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free Graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7):3829-3837.
|
[31] |
XIE W J, YUAN S H, MAO X H, et al. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater[J]. Water Research, 2013, 47(11):3573-3582.
|
[32] |
PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Applied Catalysis B:Environmental, 2008, 83(1/2):140-149.
|
[33] |
ZHOU W, MENG X X, GAO J H, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation:a state-of-the-art review[J]. Chemosphere, 2019, 225:588-607.
|
[34] |
LIU Y B, GAO G D, VECITIS C D. Prospects of an electroactive carbon nanotube membrane toward environmental applications[J]. Acc Chem Res, 2020, 53(12):2892-2902.
|
[35] |
SEN J C, WANG Q Y, ZHANG J, et al. Degradation of sulfadiazine in drinking water by a cathodic electrochemical membrane filtration process[J]. Electrochimica Acta, 2018, 277:77-87.
|
[36] |
GAO G D, ZHANG Q Y, HAO Z W, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4):2375-2383.
|
[37] |
LIANG P Y, RIVALLIN M, CERNEAUX S, et al. Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation:a successful feasibility study[J]. Journal of Membrane Science, 2016, 510:182-190.
|
[38] |
ZHENG J J, XU S P, WU Z C, et al. Removal of p-chloroaniline from polluted waters using a cathodic electrochemical ceramic membrane reactor[J]. Separation and Purification Technology, 2019, 211:753-763.
|
[39] |
JIANG W L, XIA X, HAN J L, et al. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol[J]. Environmental Science & Technology, 2018, 52(17):9972-9982.
|
[40] |
LI X H, LIU L F, YANG F L. CFC/PVDF/GO-Fe3+ membrane electrode and flow-through system improved E-Fenton performance with a low dosage of aqueous iron[J]. Separation and Purification Technology, 2018, 193:220-231.
|
[41] |
GUO D L, LIU Y B, JI H C, et al. Silicate-enhanced heterogeneous flow-through electro-fenton system using Iron oxides under nanoconfinement[J]. Environmental Science & Technology, 2021, 55(6):4045-4053.
|
[42] |
LI Z Z, SHEN C S, LIU Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B:Environmental, 2020, 260:118204.
|
[43] |
ZHENG S Y, CHEN H S, TONG X, et al. Integration of a photo-fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers:synthesis, characterization, self-cleaning performance and mechanism[J]. Applied Catalysis B:Environmental, 2021, 281:119519.
|
[44] |
LIU Y B, YANG S N, JIANG H L, et al. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination[J]. Journal of Hazardous Materials, 2021, 407:124384.
|
[45] |
SUN M, ZUCKER I, DAVENPORT D M, et al. Reactive, self-cleaning ultrafiltration membrane functionalized with Iron oxychloride nanocatalysts[J]. Environmental Science & Technology, 2018, 52(15):8674-8683.
|
[46] |
OTURAN N, ZHOU M, OTURAN M A. Metomyl degradation by electro-Fenton and electro-Fenton-like processes:a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst[J]. The Journal of Physical Chemistry A, 2010, 114(39):10605-10611.
|
[47] |
VASCONCELOS V M, PONCE-DE-LEÓN C, NAVA J L, et al. Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell[J]. Journal of Electroanalytical Chemistry, 2016, 765:179-187.
|
[48] |
PAN Z L, YU F P, LI L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chemical Engineering Journal, 2020, 385:123928.
|
[49] |
TRELLU C, RIVALLIN M, CERNEAUX S, et al. Integration of sub-stoichiometric titanium oxide reactive electrochemical membrane as anode in the electro-Fenton process[J]. Chemical Engineering Journal, 2020, 400:125936.
|
[50] |
MISAL S N, LIN M H, MEHRAEEN S, et al. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes[J]. Journal of Hazardous Materials, 2020, 384:121420.
|
[51] |
HUA L K, CAO H, MA Q Q, et al. Microalgae filtration using an electrochemically reactive ceramic membrane:filtration performances, fouling kinetics, and foulant layer characteristics[J]. Environmental Science & Technology, 2020, 54(3):2012-2021.
|
[52] |
FU W C, WANG X Y, ZHENG J J, et al. Antifouling performance and mechanisms in an electrochemical ceramic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 570/571:355-361.
|
[53] |
ANIS S F, LALIA B S, KHAIR M, et al. Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment[J]. Chemical Engineering Journal, 2021, 415:128395.
|
[54] |
MA C Y, YI C, LI F, et al. Mitigation of membrane fouling using an electroactive polyether sulfone membrane[J]. Membranes (Basel), 2020, 10(2):1-16.
|
[55] |
裴姝钊, 朱琳, 张梓萌, 等. 亚氧化钛膜电极电化学特性及其处理印染工业废水的效能研究[J]. 环境科学学报,2020,40(10):3658-3665.
|
[56] |
YANG K, LIN H, LIANG S T, et al. A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2-Sb filter for efficient contaminant removal from water[J]. RSC Advances, 2018, 8(25):13933-13944.
|
[57] |
LE T X H, HAFLICH H, SHAH A D, et al. Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode[J]. Environmental Science & Technology Letters, 2019, 6(8):504-510.
|
[58] |
LIU Y B, LIU F Q, DING N, et al. Recent advances on electroactive CNT-based membranes for environmental applications:the perfect match of electrochemistry and membrane separation[J]. Chinese Chemical Letters, 2020, 31(10):2539-2548.
|
[59] |
LIU Y B, DUSTIN L J H, XIA Q, et al. A graphene-based electrochemical filter for water purification[J]. Journal of Materials Chemistry A, 2014, 2(39):16554-16562.
|
[60] |
LIU Y, WU P, LIU F, et al. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(Ⅲ)[J]. Environmental Science & Technology, 2019, 53(3):1527-1535.
|
[61] |
BALASUBRAMANIAN K, BURGHARD M. Chemically functionalized carbon nanotubes[J]. Small, 2005, 1(2):180-192.
|
[62] |
BARREJÓN M, PRATO M. Carbon nanotube membranes in water treatment applications[J]. Advanced Materials Interfaces, 2021:2101260.
|
[63] |
JAME S A, ZHOU Z. Electrochemical carbon nanotube filters for water and wastewater treatment[J]. Nanotechnology Reviews, 2016, 5(1):41-50.
|
[64] |
胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报,2018,12(3):677-696.
|
[65] |
LIU H, ZUO K C, VECITIS C D. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption[J]. Environmental Science & Technology, 2014, 48(23):13871-13879.
|
[66] |
TAN T Y, ZENG Z T, ZENG G M, et al. Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter[J]. Separation and Purification Technology, 2020, 235:116167.
|
[67] |
CHEN S, WANG G L, LI S S, et al. Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance[J]. J Colloid Interface Sci, 2020, 560:59-68.
|
[68] |
CHEN M, WANG H, ZHAO Y Y, et al. Achieving high-performance nitrate electrocatalysis with Pd-Cu nanoparticles confined in nitrogen-doped carbon coralline[J]. Nanoscale, 2018, 10(40):19023-19030.
|
[69] |
CHOI I A, KWAK D H, HAN S B, et al. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction[J]. Applied Catalysis B:Environmental, 2017, 211:235-244.
|
[70] |
MA J, WEI W, QIN G T, et al. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor[J]. Water Research, 2022, 208:117862.
|
[71] |
GAO G D, PAN M L, VECITIS C D. Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J]. Journal of Materials Chemistry A, 2015, 3(14):7575-7582.
|
[72] |
DAI Y L, YAO Y, LI M H, et al. Carbon nanotube filter functionalized with MIL-101(Fe) for enhanced flow-through electro-Fenton[J]. Environmental Research, 2022, 204(Pt B):112117.
|
[73] |
XU Y L, YUAN Y, FAN X F, et al. Silver nanowire-carbon nanotube/coal-based carbon composite membrane with fascinating antimicrobial ability and antibiofouling under electrochemical assistance[J]. Journal of Water Process Engineering, 2020, 38:101617.
|
[74] |
LI B J, TANG W J, SUN D, et al. Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability[J]. Journal of Membrane Science, 2021, 640:119844.
|
[75] |
CAO P K, QUAN X, ZHAO K, et al. High-efficiency electrocatalysis of molecular oxygen toward hydroxyl radicals enabled by an atomically dispersed iron catalyst[J]. Environmental Science & Technology, 2020, 54(19):12662-12672.
|
[76] |
QIN F G F, MAWSON J, ZENG X A. Experimental study of fouling and cleaning of sintered stainless steel membrane in electro-microfiltration of calcium salt particles[J]. Membranes, 2011, 1(2):119-131.
|
[77] |
ZHANG Y H, WEI K J, HAN W Q, et al. Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor[J]. Electrochimica Acta, 2016, 189:1-8.
|
[78] |
ZHOU C Z, WANG Y P, CHEN J, et al. Porous Ti/SnO2-Sb anode as reactive electrochemical membrane for removing trace antiretroviral drug stavudine from wastewater[J]. Environment International, 2019, 133(A):105157.
|
[79] |
MAMEDA N, PARK H J, CHOO KH. Membrane electro-oxidizer:a new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control[J]. Water Research, 2017, 126:40-49.
|
[80] |
LIU S Q, CUI T, XU A L, et al. Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO2 filter:operating parameters, mechanism and toxicity assessment[J]. Journal of Hazardous Materials, 2018, 358:187-197.
|
[81] |
LIU S Q, WANG Y, ZHOU X Z, et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane[J]. Electrochimica Acta, 2017, 253:357-367.
|
[82] |
SALAZAR-BANDA G R, SANTOS G D O S, DUARTE GONZAGA I M, et al. Developments in electrode materials for wastewater treatment[J]. Current Opinion in Electrochemistry, 2021, 26:100663.
|
[83] |
TONG H, YANG C, LV Y Q, et al. Fabrication of tubular porous titanium membrane electrode and application in electrochemical membrane reactor for treatment of wastewater[J]. Journal of Industrial and Engineering Chemistry, 2021, 96:269-276.
|
[84] |
BEZERRA W D A B, GESSICADE D O S S, MARILIAMOURA S P, et al. Novel eco-friendly method to prepare Ti/RuO2-IrO2 anodes by using polyvinyl alcohol as the solvent[J]. Journal of Electroanalytical Chemistry, 2020, 859:113822.
|
[85] |
LI Z Y, DAI R B, YANG B C, et al. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development:performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 404(Pt B):124198.
|
[86] |
DORIA A R, SANTOS G O S, PELEGRINELLI M M S, et al. Improved 4-nitrophenol removal at Ti/RuO2-Sb2O4-TiO2 laser-made anodes[J]. Environmental Science and Pollution Research, 2021, 28(19):23634-23646.
|
[87] |
ZHANG D, LIANG X P, YANG S M, et al. Investigation of electrocatalytic activity of nanostructure Ce-doped MnOx sol-gel coating deposited on porous Ti membrane electrode[J]. Journal of Sol-Gel Science and Technology, 2018, 86(2):468-478.
|
[88] |
GENG P, SU J Y, MILES C, et al. Highly-ordered magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation[J]. Electrochimica Acta, 2015, 153:316-324.
|
[89] |
GANZENKO O, SISTAT P, TRELLU C, et al. Reactive electrochemical membrane for the elimination of carbamazepine in secondary effluent from wastewater treatment plant[J]. Chemical Engineering Journal, 2021, 419:129467.
|
[90] |
ZAKY A M, CHAPLIN B P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment[J]. environmental Science & Technology, 2013, 47(12):6554-6563.
|
[91] |
ZAKY A M, CHAPLIN B P. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane[J]. Environmental Science & Technology, 2014, 48(10):5857-5867.
|
[92] |
SKOLOTNEVA E, TRELLU C, CRETIN M, et al. A 2D convection-diffusion model of anodic oxidation of organic compounds mediated by hydroxyl radicals using porous reactive electrochemical membrane[J]. Membranes (Basel), 2020, 10(5):102.
|
[93] |
GUO L, JINGY, CHAPLIN B P. Development and characterization of ultrafiltration TiO2 magnéli phase reactive electrochemical membranes[J]. Environmental Science & Technology, 2016, 50(3):1428-1436.
|
[94] |
AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection:a review[J]. Desalination, 2016, 391:1-15.
|
[95] |
ZHANG Y Z, WANG T, MENG J J, et al. A novel conductive composite membrane with polypyrrole (PPy) and stainless-steel mesh:Fabrication, performance, and anti-fouling mechanism[J]. Journal of Membrane Science, 2021, 621:118937.
|
[96] |
XIE L C, SHU Y, HU Y Y, et al. SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection:new strategy of CNT disinfection[J]. Chemosphere, 2020, 251:126286.
|
[97] |
DUAN W Y, RONEN A, WALKER S, et al. Polyaniline-coated carbon nanotube ultrafiltration membranes:enhanced anodic stability for in situ cleaning and electro-oxidation processes[J]. ACS Applied Materials & Interfaces, 2016, 8(34):22574-22584.
|
[98] |
CHEN M, ZHENG J J, DAI R B, et al. Preferential removal of 2,4-dichlorophenoxyacetic acid from contaminated waters using an electrocatalytic ceramic membrane filtration system:mechanisms and implications[J]. Chemical Engineering Journal, 2020, 387:124132.
|
[99] |
MA L, ZHOU M H, REN G B, et al. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation[J]. Electrochimica Acta, 2016, 200:222-230.
|
[100] |
REN L H, CHEN M, MA J X, et al. Pd-O2 interaction and singlet oxygen formation in a novel reactive electrochemical membrane for ultrafast sulfamethoxazole oxidation[J]. Chemical Engineering Journal, 2022, 428:131194.
|
[101] |
YANG C, FAN Y, SHANG S S, et al. Fabrication of a permeable SnO2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater[J]. Environment International, 2021, 157:106827.
|
[102] |
ZHENG J J, YAN K L, WU Z C, et al. Effective removal of sulfanilic acid from water using a low-pressure electrochemical RuO2-TiO2@Ti/PVDF composite membrane[J]. Frontiers in Chemistry, 2018, 6:395.
|
[103] |
ZHENG J T, WANG Z W, MA J X, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science & Technology, 2018, 52(7):4117-4126.
|
[104] |
HE Y P, ZHANG P P, HUANG H, et al. Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation[J]. Separation and Purification Technology, 2020, 251:117284.
|
[105] |
孙继成, 胡维杰, 曹晶, 等. 饮用水中双氯芬酸钠的电化学膜滤法去除工艺[J]. 净水技术,2019,38(2):47-54.
|
[106] |
徐浩, 乔丹, 许志成, 等. 电催化氧化技术在有机废水处理中的应用[J]. 工业水处理,2021,41(3):1-9.
|
[107] |
周雨珺, 吉庆华, 胡承志, 等. 电化学氧化水处理技术研究进展[J]. 土木与环境工程学报(中英文),2022,44(3):104-118.
|
[108] |
雷佳妮, 李晓良, 袁孟孟, 等. 脉冲电化学氧化降解亚甲基蓝[J]. 中国环境科学,2018,38(5):1767-1773.
|
[109] |
MARKS R G H, KERPEN K, DIESING D, et al. Electrochemical degradation of perfluorooctanoic acid in aqueous solution by boron-doped diamond electrodes under pulsed voltage conditions[J]. Journal of Electroanalytical Chemistry, 2021, 895:115415.
|
[110] |
LIU X J, NOVAK J T, HE Z. Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Science of the Total Environment, 2019, 689:571-579.
|
[111] |
XU S P, ZHENG J J, WU Z, et al. Degradation of p-chloroaniline using an electrochemical ceramic microfiltration membrane with built-in electrodes[J]. Electrochimica Acta, 2018, 292:655-666.
|
[112] |
LIU L, XU Y, WANG K P, et al. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium[J]. Journal of Membrane Science, 2019, 584:191-201.
|
[113] |
RAHAMAN M S, VECITIS C D, ELIMELECH M. Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter[J]. Environmental Science & Technology, 2012, 46(3):1556-1564.
|
[114] |
LEI Q, ZHENG J J, MA J X, et al. Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system[J]. Environmental Research, 2020, 180:108861.
|
[115] |
SINGH S P, LI Y, BEER A, et al. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action[J]. ACS Appl Mater Interfaces, 2017, 9(21):18238-18247.
|
[116] |
WANG J B, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137:324-334.
|
[117] |
ZHOU X Z, LIU S Q, XU A L, et al. A multi-walled carbon nanotube electrode based on porous Graphite-RuO2 in electrochemical filter for pyrrole degradation[J]. Chemical Engineering Journal, 2017, 330:956-964.
|
[118] |
CHEN M, ZHAO X, WANG C, et al. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode:degradation performance, energy efficiency and toxicity assessment[J]. Journal of Hazardous Materials, 2021, 401:123295.
|
[119] |
SINGH S, LO S L, SRIVASTAVA V C, et al. Comparative study of electrochemical oxidation for dye degradation:parametric optimization and mechanism identification[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2911-2921.
|
[120] |
QIAO Q C, SINGH S, LO S L, et al. Effect of current density and pH on the electrochemically generated active chloro species for the rapid mineralization of p-substituted phenol[J]. Chemosphere, 2021, 275:129848.
|
[121] |
ZHANG Y H, YU T H, HAN W Q, et al. Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine using a tubular porous electrode electrocatalytic reactor[J]. Electrochimica Acta, 2016, 220:211-221.
|
[122] |
CAVALCANTI E B, SEGURA S G, CENTELLAS F, et al. Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode:degradation kinetics and oxidation products[J]. Water Research, 2013, 47(5):1803-1815.
|
[123] |
MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes:a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environmental, 2017, 202:217-261.
|
[124] |
ZHANG Y Q, ZUO S J, ZHOU M H, et al. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption[J]. Chemical Engineering Journal, 2018, 335:685-692.
|
[125] |
BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570-6631.
|
[126] |
BRILLAS E, GARCIAA-SEGURA S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes:a review on the relevance of phenol as model molecule[J]. Separation and Purification Technology, 2020, 237:116337.
|
[127] |
LIU Y B, ZHANG J, LIU F Q, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-fenton system[J]. Chemosphere, 2020, 245:125604.
|
[128] |
SUN M H, AN J S, PAN Z L, et al. Enhanced organic wastewater treatment performance in electrochemical filtration process of coal-based carbon membrane via the simple Fe2+ addition[J]. Separation and Purification Technology, 2021, 276:119418.
|
[129] |
LIANG S T, LIN H, HABTESELASSIE M, et al. Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane[J]. Water Research, 2018, 145:172-180.
|
[130] |
WEN J J, TAN X J, HU Y Y, et al. Filtration and electrochemical disinfection performance of PAN/PANI/AgNWs-CC composite nanofiber membrane[J]. Environmental Science & Technology, 2017, 51(11):6395-6403.
|
[131] |
SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Applied Catalysis B:Environmental, 2019, 245:583-595.
|
[132] |
ZHAO F, LIU L F, YANG F L, et al. E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode[J]. Chemical Engineering Journal, 2013, 230:491-498.
|
[133] |
LI X H, SHAO S L, YANG Y, et al. Engineering interface with a one-dimensional RuO2/TiO2 heteronanostructure in an electrocatalytic membrane electrode:toward highly efficient micropollutant decomposition[J]. ACS Appl Mater Interfaces, 2020, 12(19):21596-21604.
|
[134] |
GUO D L, LIU Y B. Singlet oxygen-mediated electrochemical filter for selective and rapid degradation of organic compounds[J]. Industrial & Engineering Chemistry Research, 2020, 59(31):14180-14187.
|
[135] |
PAN Z L, YU F P, LI L, et al. Electrochemical filtration carbon membrane derived from coal for wastewater treatment:insights into the evolution of electrical conductivity and electrochemical performance during carbonization[J]. Separation and Purification Technology, 2020, 247:116948.
|
[136] |
BAKR A R, RAHAMAN M S. Crossflow electrochemical filtration for elimination of ibuprofen and bisphenol a from pure and competing electrolytic solution conditions[J]. Journal of Hazardous Materials, 2019, 365:615-621.
|
[137] |
YANG S N, LIU Y B, SHEN C S, et al. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter:mechanism, impacting factors and pathways[J]. Chemosphere, 2020, 244:125525.
|
[138] |
ZHENG J J, MA J X, WANG Z W, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration:mechanisms and implications[J]. Environmental Science & Technology, 2017, 51(5):2757-2765.
|
[139] |
LI D, TANG J Y, ZHOU X Z, et al. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode[J]. Chemosphere, 2016, 149:49-56.
|
[140] |
XU A L, HAN W Q, LI J S, et al. Electrogeneration of hydrogen peroxide using Ti/IrO2-Ta2O5 anode in dual tubular membranes Electro-Fenton reactor for the degradation of tricyclazole without aeration[J]. Chemical Engineering Journal, 2016, 295:152-159.
|
[141] |
XIE J Z, MA J X, ZHANG C Y, et al. Effect of the presence of carbon in Ti4O7 electrodes on anodic oxidation of contaminants[J]. Environmental Science & Technology, 2020, 54(8):5227-5236.
|
[142] |
DUAN W Y, CHEN G D, CHEN C X, et al. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes[J]. Journal of Membrane Science, 2017, 531:160-171.
|
[143] |
HU X M, LIU Y B, LIU F Q, et al. Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite[J]. Chemosphere, 2021, 274:129790.
|
[144] |
LIU Y B, LIU F Q, QI Z L, et al. Simultaneous oxidation and sorption of highly toxic Sb(Ⅲ) using a dual-functional electroactive filter[J]. Environmental Pollution, 2019, 251:72-80.
|
[145] |
FAN X F, LIU Y M, WANG X M, et al. Improvement of antifouling andantimicrobial abilities on silver-carbon nanotube based membranes under electrochemical assistance[J]. Environmental Science & Technology, 2019, 53(9):5292-5300.
|
[146] |
NI X Y, LIU H, WANG C, et al. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation[J]. Water Research, 2020, 168:115150.
|
[147] |
LIU H, NI X Y, HUO Z Y, et al. Carbon fiber-based flow-through electrode system (FES) for water disinfection via direct oxidation mechanism with a sequential reduction-oxidation process[J]. Environmental Science & Technology, 2019, 53(6):3238-3249.
|
[148] |
WANG C, NIU J F, YIN L F, et al. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production[J]. Chemical Engineering Journal, 2018, 346:662-671.
|