Citation: | KONG Huimin, ZHAO Xiaohui, XU Wan, DAI Yuhan, ZHANG Jiayu. OCCURRENCE AND RISK ASSESSMENT OF ANTIBIOTICS IN GROUNDWATER ENVIRONMENT IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 219-226. doi: 10.13205/j.hjgc.202302029 |
[1] |
丁惠君. 鄱阳湖水环境抗生素污染特征及典型抗生素的吸附和降解研究[D]. 武汉:武汉大学, 2018.
|
[2] |
章琴琴. 北京温榆河流域抗生素污染分布特征及源解析研究[D]. 重庆:重庆大学, 2012.
|
[3] |
卫毅梅. 抗生素在城市河流中的污染特征及生态毒性研究[D]. 沈阳:辽宁大学, 2013.
|
[4] |
李佳乐. 污灌区土壤-地下水系统中典型有机污染物的环境地球化学研究[D]. 北京:中国地质大学, 2015.
|
[5] |
HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010,158(9):2992-2998.
|
[6] |
ZHOU L J, YING G G, LIU S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2012,1244:123-138.
|
[7] |
戴刚, 徐浩, 杨琼, 等. 毕节垃圾场周边水源中抗生素污染特征[J]. 环境科学与技术, 2015,38(增刊2):263-268.
|
[8] |
陈琼, 丁惠君, 张维昊, 等. 滨湖底泥对2种喹诺酮类抗生素的吸附作用研究[J]. 环境科学与技术, 2019,42(6):106-114.
|
[9] |
苏思慧, 何江涛, 杨蕾, 等. 北京东南郊土壤剖面氟喹诺酮类抗生素分布特征[J]. 环境科学, 2014,35(11):4257-4266.
|
[10] |
廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价[J]. 环境科学, 2020,41(9):4081-4087.
|
[11] |
王娅南, 黄合田, 彭洁, 等. 贵州草海喀斯特高原湿地水环境中典型抗生素的分布特征[J]. 环境化学, 2020,39(4):975-986.
|
[12] |
刘锋, 应光国, 周启星, 等. 抗生素类药物对土壤微生物呼吸的影响[J]. 环境科学, 2009,30(5):1280-1285.
|
[13] |
赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021,43(1):94-102.
|
[14] |
CHEN L, LANG H, LIU F, et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Groundwater, 2018,56(3):451-457.
|
[15] |
YAO L L, WANG Y X, TONG L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:a case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017,135:236-242.
|
[16] |
MA Y P, LI M, WU M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015,518/519:498-506.
|
[17] |
陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017,38(12):5074-5080.
|
[18] |
FU C X, XU B T, CHEN H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes[J]. Science of the Total Environment, 2021,807:151011.
|
[19] |
剧泽佳, 赵鑫宇, 陈慧, 等. 石家庄市水环境中喹诺酮类抗生素的空间分布特征与环境风险评估[J]. 环境科学学报, 2021,41(12):4919-4931.
|
[20] |
马建生, 王卓, 张泽宇. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021,40(6):944-953.
|
[21] |
European C. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances[J]. Commission Regulation (EC):No 1488/94 on Risk Assessment for Existing Substance Part Ⅱ,2003:100-103.
|
[22] |
CLEUVERS M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003,142(3):185-194.
|
[23] |
CLEUVERS M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid[J]. Ecotoxicology and Environmental Safety,2004,59(3):309-315.
|
[24] |
PARK S, CHOI K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems[J]. Ecotoxicology,2008,17(6):526-538.
|
[25] |
RODRIGUEZ-MOZAZ S, VAZ-MOREIRA I, VARELA DELLA GIUSTINA S, et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment[J]. Environmental International, 2020, 140, 105733.
|
[26] |
HALLING-SØRENSEN B, HOLTEN LVTZHØFT H C, ANDERSEN H R, et al. Environmental risk assessment of antibiotics:comparison of mecillinam, trimethoprim and ciprofloxacin[J]. Journal of Antimicrobial Chemotherapy, 2000, 46(suppl_1):53-58.
|
[27] |
BENOT F, RAPHAEL M, BERNARD V, et al. Environmental risk assessment of six human pharmaceuticals:are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment[J]. Environmental Toxicology and Chemistry, 2009, 23(5):1344-1354.
|
[28] |
TELL J, CALDWELL D J, HANER A, et al. Science-based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations[J]. Integrated Environmental Assessment and Management, 2019, 15(3):312-319.
|
[29] |
LIU Y, FENG M, WANG B, et al. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China[J]. Environmental Science and Pollution Research, 2020, 27(17):21429-21441.
|
[30] |
LIU X, LU S,GUO W, et al. Antibiotics in the aquatic environments:a review of lakes,China[J]. Sci Total Environ, 2018, 627:1195-1208.
|
[31] |
HOLTEN LU··TZHØFT H C, HALLING-SØRENSEN B, JØRGENSEN S E. Toxicity of antibacterial agents applied in danish fish farming[J]. Archives of Environmental Contamination and Toxicology, 1999,36:1-6.
|
[32] |
QIN L T, PANG X R, ZENG H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. Science of the Total Environment, 2020, 708:134552.
|
[33] |
DE LIGUORO M, DI LEVA V, GALLINA G, et al. Evaluation of the aquatic toxicity of two veterinary sulfonamides using five test organisms[J]. Chemosphere, 2010, 81(6):788-793.
|
[34] |
IM J K, KIM S H, NOH H R, et al. Temporal-spatial variation and environmental risk assessment of pharmaceuticals in tributaries of the Han River watershed, South Korea[J]. Science of the Total Environment, 2020, 741:140486.
|
[35] |
SCHWAB B W, HAYES E P, FIORI J M, et al. Human pharmaceuticals in US surface waters:a human health risk assessment[J]. Regulatory Toxicology and Pharmacology, 2005, 42(3):296-312.
|
[36] |
BOOTH A, AGA D S, WESTER A L. Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices[J]. Environmental International, 2020,141:105796.
|
[37] |
GARCIA-GALAN M J, DIAZ-CRUZ M S, BARCELO D. Occurrence of sulfonamide residues along the Ebro River basin:removal in wastewater treatment plants and environmental impact assessment[J]. Environmental International, 2011, 37(2):462-473.
|
[38] |
LI N, ZHANG X, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China[J]. Chemosphere, 2014,111:327-335.
|
[39] |
MADUREIRA T V, CRUZEIRO C, ROCHA M J, et al. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal):experimental assessment using a zebrafish embryo test[J]. Environmental Toxicology and Pharmacology, 2011,32(2):212-217.
|
[40] |
HUANG D J, HOU J H, KUO T F, et al. Toxicity of the veterinary sulfonamide antibiotic sulfamonomethoxine to five aquatic organisms[J]. Environmental Toxicology and Pharmacology, 2014, 38(3):874-880.
|
[41] |
CHOI K, KIM Y, PARK J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea[J]. Science of the Total Environment, 2008, 405(1/2/3):120-128.
|
[42] |
LI S, SHI W Z, LI H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China[J]. Science of the Total Environment, 2018, 636:1009-1019.
|
[43] |
LU S, LIN C Y, LEI K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China[J]. Water Research, 2020, 184:116187.
|
[44] |
HANNA N, SUM P, SUN Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China:its potential for resistance development and ecological and human risk[J]. Environmental International, 2018, 114:131-142.
|
[45] |
WANG H X, YANG J Q, YU X, et al. Exposure of adults to antibiotics in a shanghai suburban area and health risk assessment:a biomonitoring-based study[J]. Environmental Science &Technology, 2018, 52(23):13942-13950.
|
[46] |
US EPA. Fact Sheet:Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health-Revised Methodology (2000)[Z/OL]. 2000. URL. https://www.epa.gov/wqc/fact-sheet-methodology-deriving-ambient-water-quality-criter-iaprotection-human-health-revised.
|
[47] |
World Health Organization. Guidelines for Drinking Water Quality[M/OL]. 4th ed. Geneva 2001. WHO. URL. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/.
|