Citation: | YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022 |
[1] |
郭雅倩, 薛建辉, 吴永波, 等. 沉水植物对富营养化水体的净化作用及修复技术研究进展[J]. 植物资源与环境学报, 2020, 29(3): 58-68.
|
[2] |
郭超, 李为, 李诗琦, 等. 盐龙湖沉水植物群落变化规律及其驱动因子研究[J]. 水生态学杂志, 2021, 42(6): 34-40.
|
[3] |
徐德瑞, 周杰, 吴时强, 等. 夏季东太湖光合有效辐射衰减特征及其对沉水植物恢复的指示[J]. 湖泊科学, 2021, 33(1): 111-122.
|
[4] |
FROGNER-KOCKUM P, GÖRANSSON G, HAEGER-EUGENSSON M. Impact of climate change on metal and suspended sediment concentrations in urban waters[J]. Frontiers in Environmental Science, 2020, 8: 588335.
|
[5] |
刘畅, 韩梅, 赵志伟, 等. 混凝投药控制系统的发展现状与趋势[J]. 给水排水, 2021,57(增刊1): 524-530.
|
[6] |
饶小康, 贾宝良, 鲁立. 基于人工神经网络算法的水厂混凝投药控制系统研究与开发[J]. 长江科学院院报, 2017, 34(5): 135-140.
|
[7] |
KUSUMA H S, AMENAGHAWON A N, DARMOKOESOEMO H, et al. Evaluation of extract of Ipomoea batatas leaves as a green coagulant-flocculant for turbid water treatment: parametric modelling and optimization using response surface methodology and artificial neural networks[J]. Environmental Technology & Innovation, 2021, 24: 102005.
|
[8] |
LI L, RONG S M, WANG R, et al. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: a review[J]. Chemical Engineering Journal, 2021, 405: 126673.
|
[9] |
SUI KIM I T, SETHU V, ARUMUGASAMY S K, et al. Fenugreek seeds and okra for the treatment of palm oil mill effluent (POME)-Characterization studies and modeling with backpropagation feedforward neural network (BFNN)[J]. Journal of Water Process Engineering, 2020, 37: 101500.
|
[10] |
张长胜, 韩涛, 钱斌, 等. 改进BFO算法优化BPNN的自来水混凝加药预测模型[J]. 中国环境科学,2021,41(10): 4616-4623.
|
[11] |
叶伯生, 谢鹏, 张文彬. 基于随机遗传算法优化BP神经网络的工业机器人整机性能评估模型[J]. 中南大学学报(自然科学版), 2021, 52(9): 3204-3211.
|
[12] |
ZHANG Y Y, GAO X, SMITH K, et al. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network[J]. Water Research, 2019, 164: 114888.
|
[13] |
樊琦. 基于遗传算法和BP神经网络的微涡流混凝投药控制模型研究[D].上海:华东交通大学,2018.
|
[14] |
王新民, 柯愈贤, 张钦礼, 等. 磁化处理全尾砂料浆沉降规律及其参数优化[J]. 中国矿业大学学报, 2017, 46(4): 803-808.
|
[15] |
王晋, 林超, 张毅敏, 等. 水体浊度对沉水植物菹草生长的影响[J]. 生态与农村环境学报, 2015, 31(3): 353-358.
|
[16] |
朱光敏. 水体浊度和低光条件对沉水植物生长的影响[D].南京:南京林业大学,2009.
|
[17] |
张彦, 邹磊, 梁志杰, 等. 暴雨前后河南北部河流水质分异特征及其污染源解析[J]. 环境科学,2022,43(5): 2537-2547.
|
[18] |
张帅, 赵志伟, 丁昭霞, 等. 针对高浊山溪水的除浊工艺构建与效能研究[J]. 中国给水排水, 2018, 34(13): 38-42.
|
[19] |
辛苑, 李萍, 吴晋峰, 等. 强降雨对北运河流域沙河水库水质的影响[J]. 环境科学学报, 2021, 41(1): 199-208.
|
[20] |
张淳, 徐东耀, 康赛, 等. 磁混凝预处理小城镇混合污水的效能与混凝机制研究[J]. 环境科学学报,2022,42(7): 268-278.
|
[21] |
李祥林, 钟建东. 响应面法优化聚合氯化铝混凝效果的研究[J]. 中国给水排水, 2015, 31(21): 141-143.
|
[22] |
QIAO Y H, FENG J F, LIU X, et al. Surface water pH variations and trends in China from 2004 to 2014[J]. Environmental Monitoring and Assessment, 2016, 188(7): 443.
|
[23] |
ZHANG W L, SHI M, WANG L Q, et al. New insights into nitrogen removal potential in urban river by revealing the importance of microbial community succession on suspended particulate matter[J]. Environmental Research, 2022, 204: 112371.
|
[24] |
YAN Z G, FAN J T, ZHENG X, et al. Neglect of temperature and ph impact leads to underestimation of seasonal ecological risk of ammonia in chinese surface freshwaters[J]. Journal of Chemistry, 2019: 3051398.
|
[25] |
QIU R J, WANG Y K, WANG D, et al. Water temperature forecasting based on modified artificial neural network methods: two cases of the Yangtze River[J]. Science of the Total Environment, 2020, 737: 139729.
|
[26] |
汪萌. 上海市河流表层水体固氮速率及其影响因子[D].上海:华东师范大学,2017.
|
[27] |
张佩. 都市区小型湖库水体碳形态与甲烷排放的时空特征研究[D].重庆:重庆大学,2020.
|
[28] |
张艳晴, 周东, 周升, 等. 软围隔系统在迎风岸坡植被恢复中的应用研究[J]. 安徽农业科学, 2022, 50(6): 193-197.
|
[29] |
王琦, 韩煜, 史娜娜, 等. 沉水植物群落重构技术在滇池草海水生态修复中的应用[C]//中国环境科学学会. 2020中国环境科学学会科学技术年会论文集(第2卷), 2020: 216-223.
|
[30] |
年跃刚, 宋英伟, 李英杰, 等. 富营养化浅水湖泊稳态转换理论与生态恢复探讨[J]. 环境科学研究, 2006,19(1): 67-70.
|
[31] |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
|
[32] |
GRIFFITHS K A, ANDREWS R C. The application of artificial neural networks for the optimization of coagulant dosage[J]. Water Supply, 2011, 11(5): 605-611.
|
[33] |
ZHANG Q, STANLEY S J. Real-time water treatment process control with artificial neural networks[J]. Journal of Environmental Engineering, 1999, 125(2): 153-160.
|
[34] |
MAIER H. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters[J]. Environmental Modelling & Software, 2004, 19(5): 485-494.
|
[35] |
VINITHA E V, MANSOOR AHAMMED M, GADEKAR M R. Chemical coagulation of greywater: modelling using artificial neural networks[J]. Water Science and Technology, 2018, 2017(3): 869-877.
|