Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 5
May  2023
Turn off MathJax
Article Contents
JIANG Lihua, ZHUO Guihua, HE Yuheng, YANG Shugui, LIN Hong, ZHENG Yuyi. INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001
Citation: JIANG Lihua, ZHUO Guihua, HE Yuheng, YANG Shugui, LIN Hong, ZHENG Yuyi. INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001

INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS

doi: 10.13205/j.hjgc.202305001
  • Received Date: 2022-04-26
  • Thermophilic hydrolysis pretreatment is an effective method to promote anaerobic hydrolysis of low organic matter sludge, and exploring the leaching pattern of low organic matter sludge after thermophilic hydrolysis pretreatment at different solid contents can provide a basic theoretical basis for its efficient anaerobic fermentation. The effects of solid contents (SC), temperature and time on the solubilization of substances from thermophilic hydrolysis sludge were investigated by sequential batch experiments and correlation analysis. The results showed that the sludge solubilization physicochemical characteristics are highly correlated with thermophilic hydrolysis temperature and SC(P=0.272~0.757,0.249~0.774). The concentration of soluble carbohydrates, soluble proteins, total volatile fatty acids (TVFA) and soluble organic carbon (SOC) in sludge at 8%, 10% and 12% SC increased with the increase of treatment temperature, with the exception of sludge at 6% SC, while the case for pH was opposite. In addition to the 8% SC, the concentration of ammonia nitrogen (NH4+-N) and free ammonia (FAN) also increased with the increase of solid and thermal hydrolysis temperature. But when at the same pretreatment temperature, the concentrations of soluble carbohydrates, soluble proteins, TVFA, SOC, NH4+-N and FAN also rose with SC on the whole, while we found that SC had no significant influence on pH. Meanwhile, the solubilization rate of proteins was higher than carbohydrates when the solids content was 6%~10%, and the solubilization rate augmentation of soluble protein decreased with the increased of SC. While at 6% or 12% SC, the solubilization rate of TVFA increased insignificantly, and the changes of SOC was consistent with soluble chemical oxygen demand(SCOD), whose value was mostly dependent on the concentration of soluble proteins.
  • loading
  • [1]
    ZHANG H, TAO W, HOU M, et al. Effect of potassium ferrate as a dewatering conditioner on sludge pyrolysis characteristics and the releasing characteristics of nitrogen, sulfur, and chlorine during sewage sludge pyrolysis[J]. Processes, 2023, 11(3): 920
    [2]
    KHANH NGUYEN V, CHAUDHARY D K, Dahal R H, et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge[J]. Fuel, 2021, 285:119105.
    [3]
    CHEN H, YI H, LI H, et al. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism[J]. Renewable Energy, 2020, 147: 2409-2416.
    [4]
    薛勇刚. 热水解温度和时间对污泥有机物溶出的影响[J]. 净水技术, 2019, 38(增刊1): 143-146.
    [5]
    TOUTIAN V, BARJENBRUCH M, UNGER T, et al. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge[J]. Water Research, 2020, 171:115383.
    [6]
    SONG H, HAN S K, KIM C, et al. A Study on the Viscosity Characteristics of Dewatered Sewage Sludge according to Thermal Hydrolysis Reaction[J]. Jornal of Korea Organic Resource Recycling Association, 2014, 22(1): 27-34.
    [7]
    CAO X, PAN Y, JIANG K, et al. Effect of high-temperature thermal hydrolysis on rheological properties and dewaterability of sludge[J]. Environmental Technology, 2021, 42(23): 3707-3715.
    [8]
    刘文静. 高温热水解预处理对污泥脱水性能影响的中试试验[J]. 净水技术, 2019, 38(增刊2): 36-39.
    [9]
    YANG D, DAI X, SONG L, et al. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability[J]. Bioresource Technology, 2019, 290:121753.
    [10]
    韩芸, 卓杨, 彭党聪, 等. 不同含固率污泥热水解后厌氧消化特性及有机物转化[J]. 中国给水排水, 2017, 33(23): 33-38.
    [11]
    JEONG S Y, CHANG S W, NGO H H, et al. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content[J]. Waste Management, 2019, 85: 214-221.
    [12]
    马俊伟, 曹芮, 周刚, 等. 浓度对高固体污泥热水解特性及流动性的影响[J]. 环境科学, 2010, 31(7): 1583-1589.
    [13]
    刘常青, 王玉兰, 林鸿, 等. 低有机质污泥投加药剂联合低温热水解及后续厌氧发酵研究[J]. 化工学报, 2017, 68(4): 1608-1613.
    [14]
    SILES J A, BREKELMANS J, MARTIN M A, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010, 101(23): 9040-9048.
    [15]
    陈汉龙, 严媛媛, 何群彪, 等. 温和热处理对低有机质污泥厌氧消化性能的影响[J]. 环境科学, 2013, 34(2): 629-634.
    [16]
    DWYER J, STARRENBURY D, TAIT S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18): 4699-4709.
    [17]
    BOUGRIER C, DELGENES J P, CARRERE H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion[J]. Chemical Engineering Journal, 2008, 139(2): 236-244.
    [18]
    LU D, SUN F, ZHOU Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J]. Bioresource Technology, 2018, 266: 60-67.
    [19]
    谭志伟,余爱农,刘应煊. 水分含量对L-抗坏血酸-L-半胱氨酸Maillard反应体系中挥发性产物的影响[J].食品科学,2014,35(10):132-138.
    [20]
    CHEN S, LI N, DONG B, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9.
    [21]
    WILSON C A, NOVAK J T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment[J]. Water Research, 2009, 43(18): 4489-4498.
    [22]
    柯壹红, 曾艺芳, 李华藩, 等. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020, 38(8): 21-26

    ,12.
    [23]
    高源, 韩芸, 韩露, 等. 不同温度水热处理对高含固污泥有机物转化及组分的影响[J]. 环境工程学报, 2020, 14(10): 2823-2830.
    [24]
    LIAO Q, GUO L, RAN Y, et al. Optimization of polyhydroxyalkanoates (PHA) synthesis with heat pretreated waste sludge[J]. Waste Management, 2018, 82:15-25.
    [25]
    XUE Y, LIU H, CHEN S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal, 2015, 264: 174-180.
    [26]
    ZHANG Y, LI H, CHENG Y, et al. Influence of solids concentration on diffusion behavior in sewage sludge and its digestate[J]. Chemical Engineering Science, 2016, 152: 674-677.
    [27]
    PHUONG L N, UDUGAMA I A, GERNAEY K V, et al. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment[J]. Chemosphere, 2021, 281:130890.
    [28]
    ZHANG W, DONG B, DAI X, et al. Enhancement of sludge dewaterability via the thermal hydrolysis anaerobic digestion mechanism based on moisture and organic matter interactions[J]. Science of the Total Environment, 2021, 798:149229.
    [29]
    HUANG W, ZHAO Z, YUAN T, et al. Enhanced dry anaerobic digestion of swine excreta after organic nitrogen being recovered as soluble proteins and amino acids using hydrothermal technology[J]. Biomass & Bioenergy, 2018, 108: 120-125.
    [30]
    NAKAKUBO R, MOLLER H B, NIELSEN A M, et al. Ammonia Inhibition of Methanogenesis and Identification of Process Indicators during Anaerobic Digestion[J]. Environmental Engineering Science, 2008, 25(10): 1487-1496.
    [31]
    DUAN N, DONG B, WU B, et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study[J]. Bioresource Technology, 2012, 104: 150-156.
    [32]
    陈伟, 贾原媛, 郑伟, 等. 胞外多聚物对酶催化污泥厌氧水解的影响研究[J]. 环境科学, 2011, 32(8): 2334-2339.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (183) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return