Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Kaiwen, MA Zhen, SHAN Junyue, ZHANG Zhenming, WANG Xingfu, HUANG Xianfei. SPECTRAL CHARACTERISTICS AND SOURCE ANALYSIS OF SOIL DISSOLVED ORGANIC MATTER IN KARST MOUNTAINOUS AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 115-124. doi: 10.13205/j.hjgc.202305016
Citation: HUANG Kaiwen, MA Zhen, SHAN Junyue, ZHANG Zhenming, WANG Xingfu, HUANG Xianfei. SPECTRAL CHARACTERISTICS AND SOURCE ANALYSIS OF SOIL DISSOLVED ORGANIC MATTER IN KARST MOUNTAINOUS AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 115-124. doi: 10.13205/j.hjgc.202305016

SPECTRAL CHARACTERISTICS AND SOURCE ANALYSIS OF SOIL DISSOLVED ORGANIC MATTER IN KARST MOUNTAINOUS AREA

doi: 10.13205/j.hjgc.202305016
  • Received Date: 2022-05-18
  • The characteristic, source, and composition of soil dissolved organic matter (SDOM) in typical karst mountainous area of Guizhou Province were studied by using ultraviolet-visible absorption spectrum (UV-vis) and three-dimensional fluorescence excitation-emission matrix (EEMs) combined with parallel factor analysis (PARAFAC). The results showed that SDOC content varied with the land-use type, and the SDOC content of grassland surface layer was significantly higher than that of woodland. Three fluorescent components, C1 (humic-like), C2 (tryptophan-like), and C3 (tyrosine-like), were derived from SDOM using the PARAFAC model. There was a significant positive correlation among the three components (P<0.01), and these three components were distributed differently in different land-use types. UV-vis spectral characteristics indicated that the relative molecular weight of SDOM in the grassland surface layer was smaller than that in the woodland, and SDOM in arid land contained more aromatic substances and hydrophobic components. The fluorescence characteristic index indicated that SDOM in the study area had a low humification degree and weak stability, and there were differences in SDOM sources among different land-use types. SDOM in woodland was mainly derived from autochthonous sources. SDOM in arid land was derived from autochthonous and terrigenous sources. The SDOM source characteristic of grassland surface layer was the same as those of arid land, while SDOM in the subsurface layer was mainly derived from autochthonous sources. With the increase in altitude, the proportion of component C1 increased, the proportion of C3 decreased, the humification degree of SDOM increased, and the contribution of microbial sources decreased. The study indicated that SDOM fluorescence and absorption characteristics can effectively track the composition and source characteristics of the SDOM in karst mountains, and be used as an evaluation index for regional land use and environmental decision-making.
  • [1]
    RIZZUTO S, JONES K C, ZHANG H, et al. Critical assessment of an equilibrium-based method to study the binding of waterborne organic contaminants to natural dissolved organic matter (DOM)[J]. Chemosphere, 2021, 285: 131524.
    [2]
    JIANG T, KAAL J, LIANG J, et al. Composition of dissolved organic matter (DOM) from periodically submerged soils in the three gorges reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-gc-ms and thermally assisted hydrolysis and methylation[J]. Science of the Total Environment, 2017, 603/604: 461-471.
    [3]
    TANG J M, LIANG S X, SUN H W, et al. Analysis of dissolved organic matters in Fu river of baoding using three dimensional fluorescence excitation-emission matrix[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 450-454.
    [4]
    DING Y, SHI Z Q, YE Q T, et al. Chemodiversity of soil dissolved organic matter[J]. Environmental Science and Technology, 2020, 54(10): 6174-6184.
    [5]
    肖骁, 何小松, 席北斗, 等. 垃圾填埋水溶性有机物组成、演化及络合重金属特征[J]. 环境科学, 2017, 38(9): 3705-3712.
    [6]
    YUAN D H, AN Y C, HE X S, et al. Fluorescent characteristic and compositional change of dissolved organic matter and its effect on heavy metal distribution in composting leachates[J]. Environmental Science and Pollution Research, 2018, 25(19): 18866-18878.
    [7]
    INAMDAR S, FINGER N, SINGH S, et al. Dissolved organic matter (DOM) concentration and quality in a forested mid-atlantic watershed, USA[J]. Biogeochemistry, 2012, 108(1): 55-76.
    [8]
    ZHAO C, GAO S J, ZHOU L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing district, Beijing[J]. Environmental Science and Pollution Research, 2019, 26(3): 2960-2973.
    [9]
    TANG J F, WANG W D, YANG L, et al. Variation in quantity and chemical composition of soil dissolved organic matter in a peri-urban critical zone observatory watershed in eastern China[J]. Science of the Total Environment, 2019, 688: 622-631.
    [10]
    秦纪洪, 王姝, 刘琛, 等. 海拔梯度上川西高山土壤溶解性有机质(DOM)光谱特征[J]. 中国环境科学, 2019, 39(10): 4321-4328.
    [11]
    HUANG X F, ZHOU Y C, ZHANG Z M. Carbon sequestration anticipation response to land use change in a mountainous karst basin in China[J]. Journal of Environmental Management, 2018, 228: 40-46.
    [12]
    BAI Y X, ZHOU Y C. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, 2020, 357: 113938.
    [13]
    AHMED A R, PICHLER V, HOMOLÁK M, et al. High organic carbon stock in a karstic soil of the middle-european forest province prsists after centuries-long agroforestry management[J]. European Journal of Forest Research, 2012, 131(6): 1669-1680.
    [14]
    KINDLER R, SIEMENS J, KAISER K, et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance[J]. Global Change Biology, 2011, 17(2): 1167-1185.
    [15]
    杨威杉, 李猛, 孙笑蕾, 等. 不同海拔下青海草甸土中溶解性有机质的荧光光谱特征[J]. 光谱学与光谱分析, 2019, 39(5): 1477-1482.
    [16]
    丁卫红, 莫世江, 张鹏飞. 贵州韭菜坪石林形态差异性分析[J]. 毕节学院学报, 2007,25(4): 94-99.
    [17]
    NELSON D A, SOMMERS L. Total carbon, organic carbon, and organic matter[J]. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 1983, 9: 539-579.
    [18]
    HUANG M, LI Z Y, HUANG B, et al. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using eem-parafac combined with two-dimensional FTIR correlation analyses[J]. Journal of Hazardous Materials, 2017, 344: 539-548.
    [19]
    DILLING J, KAISER K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using uv photometry[J]. Water Research, 2002, 36(20): 5037-5044.
    [20]
    HANSEN A M, KRAUS T E, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032.
    [21]
    LI P H, HUR J. Utilization of uv-vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(1/2/3/4/5/6): 131-154.
    [22]
    LAVONEN E E, KOTHAWALA D N, TRANVIK L J, et al. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J]. Water Research, 2015, 85: 286-294.
    [23]
    HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the gironde estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719.
    [24]
    MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified parafac model[J]. Environmental Science & Technology, 2011, 45(7): 2909-2916.
    [25]
    纪美辰, 李思佳, 常明, 等. 二龙湖表层水体有色溶解有机物的光学特性及来源[J]. 环境科学研究, 2020, 33(8): 1821-1829.
    [26]
    许金鑫, 王初, 姚东京, 等. 崇明东滩湿地土壤溶解性有机质的光谱特征分析[J]. 环境工程, 2020, 38(11): 218-225.
    [27]
    HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
    [28]
    梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征:紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7): 2496-2505.
    [29]
    WU H H, XU X K, CHENG W G, et al. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw[J]. Scientific Reports, 2017, 7(1): 1-12.
    [30]
    ZHANG X, LI Z, NIE X D, et al. The role of dissolved organic matter in soil organic carbon stability under water erosion[J]. Ecological Indicators, 2019, 102: 724-733.
    [31]
    FOUCHÉ J, CHRISTIANSEN C T, LAFRENIōRE M, et al. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter[J]. Nature Communications, 2020, 11(1): 4500.
    [32]
    GAO J K, LIANG C L, SHEN G Z, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere, 2017, 176: 108-116.
    [33]
    李帅东, 张明礼, 杨浩, 等. 昆明松华坝库区表层土壤溶解性有机质(DOM)的光谱特性[J]. 光谱学与光谱分析, 2017, 37(4): 1183-1188.
    [34]
    张博, 王书航, 姜霞, 等. 太湖五里湖水体悬浮物中水溶性有机质(WSOM)的荧光光谱组分鉴别及其与氮形态的关系[J]. 湖泊科学, 2018, 30(1): 102-111.
    [35]
    STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using parafac analysis[J]. Limnology & Oceanography, 50(2): 686-697.
    [36]
    MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48.
    [37]
    OHN O, TSUTOM U. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
    [38]
    XI M, ZI Y Y, WANG Q Q, et al. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China[J]. Physics & Chemistry of the Earth Parts A/B/C, 2018, 103: 35-44.
    [39]
    宋亚辉, 张娇阳, 刘鸿飞, 等. 管理措施对黄土高原油松人工林土壤水溶性碳氮及其三维荧光特征的影响[J]. 环境科学, 2020, 41(2): 905-913.
    [40]
    QUIDEAU S, BOCKHEIM J. Biogeochemical cycling following planting to red pine on a sandy prairie soil[R]: Wiley Online Library, 1997, 26(4): 1167-1175.
    [41]
    GREGORICH E G, LIANG B C, Drury C F, et al. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils[J]. Soil Biology and Biochemistry, 2000, 32(5): 581-587.
    [42]
    LEENHEER J A, CROUÉ J P. Peer reviewed: characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 18-26.
    [43]
    JAFARIAN Z, KAVIAN A. Effects of land-use change on soil organic carbon and nitrogen[J]. Communications in Soil Science and Plant Analysis, 2013, 44(1): 339-346.
    [44]
    李璐璐, 江韬, 卢松, 等. 利用紫外-可见吸收光谱估算三峡库区消落带水体、土壤和沉积物溶解性有机质(DOM)浓度[J]. 环境科学, 2014, 35(9): 3408-3416.
    [45]
    彭志刚, 刘晓庆. 不同深度土壤中水溶性有机物荧光光谱特征研究[J]. 现代农业科技, 2011(5): 272-273.
    [46]
    MANN P J, SPENCER R G, HERNES P J, et al. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements[J]. Frontiers in Earth Science, 2016, 4: 25.
    [47]
    KAISER K, GUGGENBERGER G, HAUMAIER L. Changes in dissolved lignin-derived phenols, neutral sugars, uronic acids, and amino sugars with depth in forested haplic arenosols and rendzic leptosols[J]. Biogeochemistry, 2004, 70(1): 135-151.
    [48]
    訾园园, 孔范龙, 郗敏, 等. 胶州湾滨海湿地土壤溶解性有机质的三维荧光特性[J]. 应用生态学报, 2016, 27(12): 3871-3881.
    [49]
    王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学, 2016, 37(6): 2082-2092.
    [50]
    WANG X W, LIU Z Q, XIONG K N, et al. Soil organic carbon distribution and its response to soil erosion based on eem-parafac and stable carbon isotope, a field study in the rocky desertification control of south China karst[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3210.
  • Relative Articles

    [1]WEI Gengrui, SONG Zhaohui, GUAN Xianghong, KE Xiong, WEI Tuo, HU Yun, WEI Chaohai. PROPERTIES, CHARACTERIZATION METHODS, AND ENVIRONMENTAL IMPACTS OF DISSOLVED ORGANIC MATTER IN AQUATIC SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 74-90. doi: 10.13205/j.hjgc.202409007
    [2]YANG Yi, ZHAO Rui, ZHENG Zhenze, SHU Qilin, LIU Wei. FLUORESCENT COMPONENTS, MOLECULAR PROPERTIES AND SOURCES OF DOM IN SECONDARY EFFLUENT OF MUNICIPAL SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 66-72. doi: 10.13205/j.hjgc.202412009
    [3]LI Xu, XUE Shuang, YU Yingtan, JIANG Caihong, LIU Qiang. RELEASE LAW OF TRIPLET STATES OF DISSOLVED ORGANIC MATTER DURING ICE MELTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 41-50. doi: 10.13205/j.hjgc.202403005
    [4]SUN Yueyin, HUANG Qiong, ZHOU Jie, YU Xiaomeng, ZHU Jie, GU Mingyang, XU Lirui, YANG Bo, TAO Tao. PREPARATION OF VISIBLE LIGHT CATALYST AND PERFORMANCE ANALYSIS OF FORMALDEHYDE DEGRADATION OVER SILVER-BISMUTH MODIFIED TiO2 NANOMATERIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020
    [5]ZHANG Zhibo, DONG Yilin, LI Jingchao, CHEN Xinyu, REN Zhijun. DEGRADATION BEHAVIOR AND BIOLOGICAL RESPONSE OF CIPROFLOXACIN WASTEWATER BY INTIMATELY COUPLED PHOTOCATALYSIS AND BIODEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 18-25. doi: 10.13205/j.hjgc.202304003
    [6]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [7]TAI Dezhi, YU Jixin, ZHANG Hua, ZENG Honghu, SUN Xiaojie, LU Ze. FULVIC ACID SPECTRAL CHARACTERISTICS DURING COMPOSTING OF BIOLEACHING SLUDGE AND DIFFERENT MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 119-128. doi: 10.13205/j.hjgc.202303016
    [8]WANG Shu-ting, WEI Jian-jian, MA Xue-rou, MA De-hua, LI Jian-sheng. CHANGES OF ACUTE TOXICITY AND FLUORESCENCE SPECTRUM PROPERTIES OF PHENOL WASTEWATER TREATED BY OZONE ADVANCED OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 69-76. doi: 10.13205/j.hjgc.202111008
    [9]XU Jin-xin, WANG Chu, YAO Dong-jing, DUN Jia-yao, HUANG Min-hui, SUN He-chen. SPECTRAL CHARACTERISTICS OF SOIL DISSOLVED ORGANIC MATTERS IN CHONGMING DONGTAN WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 218-225. doi: 10.13205/j.hjgc.202011035
    [17]He Zhijiang Zhang Yuankai Wang Hongchen Qi Lu Yin Xunfei Zhang Xiaojun, . THREE-DIMENSIONAL NUMERICAL SIMULATION ANALYSIS ON RECTANGULAR SECONDARY SETTLING TANKS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 15-20. doi: 10.13205/j.hjgc.201510004
    [18]Zhang Weichao, Lin Yuxi, Xiao Jiuhua, Wei Qunshan, Yan Changzhou, Liu Jianshe. EFFECT OF DOM WITH DIFFERENT CONCENTRATIONS FROM DIFFERENT ORIGINS ON ANALYSIS AND MEASUREMENT OF OTC[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 123-126. doi: 10.13205/j.hjgc.201508028
  • Cited by

    Periodical cited type(5)

    1. 陈心怡,刘钰钦,陈淼,王文峰. 作物多样性(轮作)下砖红壤溶解性有机质含量及光谱特征. 农业资源与环境学报. 2025(01): 149-158 .
    2. 余羿琼,周翠红,冯书耕,张明玉,王梦涵. 外源性物质对消化沼液中DOM光谱特征的影响. 环境工程学报. 2025(02): 364-372 .
    3. 秦亚强,孟凡生,张铃松,薛浩,张胜. 不同条件下腐殖酸三维荧光特征及水质指标影响研究. 环境科学与管理. 2024(01): 72-77 .
    4. 张斌,梁龙,谢配红,曾淑芳. 锑与溶解性有机质的络合作用研究进展. 安全与环境工程. 2024(06): 235-241+276 .
    5. 朱晓艳,卢禹晗,武忠,董向前,王琪琛,柳钟惠,路永正. 外源氮磷输入对泥炭地DOM结构复杂性的影响. 中国环境科学. 2024(12): 6807-6816 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.4 %FULLTEXT: 8.4 %META: 86.0 %META: 86.0 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.6 %其他: 19.6 %其他: 0.9 %其他: 0.9 %上海: 0.9 %上海: 0.9 %东莞: 1.9 %东莞: 1.9 %丽水: 0.9 %丽水: 0.9 %保定: 0.9 %保定: 0.9 %北京: 0.9 %北京: 0.9 %南昌: 0.9 %南昌: 0.9 %南通: 0.9 %南通: 0.9 %台州: 1.9 %台州: 1.9 %合肥: 0.9 %合肥: 0.9 %大同: 1.9 %大同: 1.9 %天津: 0.9 %天津: 0.9 %常德: 2.8 %常德: 2.8 %张家口: 0.9 %张家口: 0.9 %成都: 1.9 %成都: 1.9 %昆明: 2.8 %昆明: 2.8 %晋城: 0.9 %晋城: 0.9 %湖州: 0.9 %湖州: 0.9 %漯河: 6.5 %漯河: 6.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 5.6 %苏州: 5.6 %衡阳: 0.9 %衡阳: 0.9 %衢州: 1.9 %衢州: 1.9 %西宁: 3.7 %西宁: 3.7 %贵阳: 6.5 %贵阳: 6.5 %运城: 4.7 %运城: 4.7 %遵义: 0.9 %遵义: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %长春: 0.9 %长春: 0.9 %其他其他上海东莞丽水保定北京南昌南通台州合肥大同天津常德张家口成都昆明晋城湖州漯河芒廷维尤芝加哥苏州衡阳衢州西宁贵阳运城遵义郑州重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return