Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
MA Qingpeng, YANG Kai, ZENG Yongqin, BI Xue, ZHOU Yan, ZHANG Zhuo. PERFORMANCE OF SCHWERTMANNITE IN FENTON-LIKE OXIDATION OF PHENOL IN LIQUID PHASE AND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 117-123,150. doi: 10.13205/j.hjgc.202306016
Citation: MA Qingpeng, YANG Kai, ZENG Yongqin, BI Xue, ZHOU Yan, ZHANG Zhuo. PERFORMANCE OF SCHWERTMANNITE IN FENTON-LIKE OXIDATION OF PHENOL IN LIQUID PHASE AND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 117-123,150. doi: 10.13205/j.hjgc.202306016

PERFORMANCE OF SCHWERTMANNITE IN FENTON-LIKE OXIDATION OF PHENOL IN LIQUID PHASE AND SOIL

doi: 10.13205/j.hjgc.202306016
  • Received Date: 2022-05-12
    Available Online: 2023-09-02
  • Schwertmannite (Sch) presents high catalytic properties potential for phenol oxidation in a Fenton-like mechanism, because of its unique combination of Fe composition and structure characteristics. In this study, Sch was fabricated as a heterogeneous Fenton-like catalyst through chemical oxidation, for phenol degradation in polluted water and soil. The synthetic minerals have a typical sea-urchin-like structure and ordered morphology with unique channels of a specific size range. The catalytic performance of Sch for phenol oxidation in water and alcohol with various pH values was investigated. Under an acidic pH, nearly 98% of phenol was successfully removed. When Sch material was added to neutral or nearly acidic C6H5OH contaminated soil at a mass ratio of 1.25% or 2.5%, the concentration of C6H5OH could be reduced from 6.052 mg/kg to less than 0.2 mg/kg. The material had great potential application prospect in actual remediation projects of phenol polluted soil.
  • loading
  • [1]
    孙怡,于利亮,黄浩斌,等.高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J].化工学报,2017,68(5):1743-1756.
    [2]
    KANG N, LEE D S, YOON J, et al. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols[J]. Chemosphere, 2002, 47(9):915-924.
    [3]
    XU J, YUN X H, LI M, et al. Iron-containing palygorskite clay as Fenton reagent for the catalytic degradation of phenol in water[J]. RSC Advances, 2021, 11(47):29537-29542.
    [4]
    YAN Q Y, LIAN C, HUANG K, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous fenton reaction for pollutant control[J]. Angewandte Chemie, 2021,60(31):17155-17163.
    [5]
    YAN X H, LIU X H, WANG X R, et al. Condition optimization of pesticide contaminated soils remediation by modified Fenton reagent[J]. Journal of Environmental Engineering Technology, 2020, 10(2):288-292.
    [6]
    GARRIDO-RAMÍREZ E G, THENG B K G, MORA M L, et al. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions:a review[J]. Applied Clay Science, 2010, 47:182-192.
    [7]
    侯琳萌,清华,吉庆华.类芬顿反应的催化剂、原理与机制研究进展[J].环境化学,2022,41(6):1843-1855.
    [8]
    BIGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ) in acid mine water[J]. Geochimica Et Cosmochimica Acta, 1990, 54(10):2743-2758.
    [9]
    ZHANG Z, BI X, LI X T, et al. Schwertmannite:occurrence, properties, synthesis and application in environmental remediation[J]. RSC Advances, 2008, 8(59):33583-33599.
    [10]
    REGENSPURG S, BRAND A, PEIFFER S, et al. Formation and stability fo schwertmannite in acidic mining lakes[J]. Geochimica Et Cosmochimica Acta, 2004, 68(6):1185-1197.
    [11]
    GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology, 2021, 11(4):734-739.
    [12]
    GARRIDO-RAMÍREZ E G, THENG B K G, MORA M L, et al. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions:a review[J]. Applied Clay Science, 2010, 47:182-192.
    [13]
    YU J Y, HEO B, CHOI I K, et al. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage[J]. Geochimica Et Cosmochimica Acta, 1999, 63(19):3407-3416.
    [14]
    WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262(15):412-419.
    [15]
    DUAN H T, YONG L, YIN X H, et al. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/Schwertmannite system[J]. Chemical Engineering Journal, 2016, 283:873-879.
    [16]
    YANG G, HUANG S C, WANG C L, et al. Degradation of phthalate eaters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale Schwertmannite[J]. Chemospheres, 2016, 159:282-292.
    [17]
    LI X, ZHANG Y K, XIE Y, et al. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized Schwertmannite catalyst[J]. Journal Hazardous Materials, 2018, 344:689-697.
    [18]
    中国生态环境部. 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].
    [19]
    HU T, CAO Q Q, FAN X L, et al. Study on competitive removal of cadmium and phenol in soil by hydrotalcite-like/biochar composites[J]. Shandong Chemical Industry, 2020, 49(24):4-6.
    [20]
    BOILY J F, GASSMAN P L, PERETYAZHKO T, et al. FTIR spectral components of schwertmannite[J]. Environmental Science & Technology, 2010, 44(4):1185-1190.
    [21]
    ZHANG Z, GUO G L, LI X T, et al. Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(Ⅵ) adsorption performance[J]. Journal Hazardous Materials, 2019, 367:520-528.
    [22]
    CHENG A H, LEI X Y. Fenton-like catalytic oxidation of phenol by polysilicate ferric doped iron oxyhydroxides[J]. Chinese Journal of Environmental Engineering, 2021, 15(3):817-825.
    [23]
    LI D Q, JIANG J Y, ZHOU Y X, et al. Degradation of cationic red X-GRL dye wastewater with H2O2 catalyzed by Fe-containing zeolite[J]. Journal of Environmental Engineering, 2013, 3(5):392-397.
    [24]
    HABER F, WEISS J. The catalytic decomposition of hydrogen peroxide by iron salts[J]. Proceedings of the Royal Society of London, 1934, 147(861):332-351.
    [25]
    GARRIDO-RAMIREZ E G, THENG B, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions:a review[J]. Applied Clay Science, 2010, 47(3/4):182-192.
    [26]
    WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262(15):412-419.
    [27]
    LUO C Y, ZHAGN Z, ZHAO H F. The mineralogical characteristics of schwertmannite and its progress in arsenic removal[J]. Environmental Chemistry, 2021, 40(11):3530-3543.
    [28]
    DAI H W, CHEN J X, MIAO X Z, et al. Effect of alcohols on scavenging efficiencies to hydroxyl radical in UV-Fenton system[J]. China Environmental Science, 2018, 38(1):202-209.
    [29]
    GHADETAJ A, ALMASI H, MEHRYAR L. Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil[J]. Food Packaging & Shelf Life, 2018, 16:31-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return