Citation: | ZHU Zebing, PEI Yunyan, SHAN Lili, XU Siyang, XU Linyan, YUAN Yixing. MICROBIAL INTERSPECIFIC INTERACTION AND ITS INFLUENCING FACTORS IN BIOFILM OF DRINKING WATER DISTRIBUTION SYSTEMS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 210-221. doi: 10.13205/j.hjgc.202306028 |
[1] |
COLLIER S A, DENG L, ADAM E A, et al. Estimate of burden and direct healthcare cost of infectious waterborne disease in the united states[J]. Emerging Infectious Diseases, 2021, 27(1):140-149.
|
[2] |
WANG T, SUN D L, ZHANG Q, et al. China's drinking water sanitation from 2007 to 2018:a systematic review[J]. Science of the Total Environment, 2021, 757:143923.
|
[3] |
ZHU Z B, SHAN L L, LI X S, et al. Effects of interspecific interactions on biofilm formation potential and chlorine resistance:evaluation of dual-species biofilm observed in drinking water distribution systems[J]. Journal of Water Process Engineering, 2020, 38:101564.
|
[4] |
BIMAKR F, GINIGE M P, KAKSONEN A H, et al. Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems[J]. Sensors and Actuators B-Chemical, 2018, 277:526-534.
|
[5] |
景双艳, 魏莲花. 金黄色葡萄球菌生物膜形成及其与持留菌关系研究进展[J]. 中国生物制品学杂志, 2021, 34(1):102-105.
|
[6] |
CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections[J]. Nanomaterials, 2021, 11(4):1046.
|
[7] |
REUBEN R C, ROY P C, SARKAR S L, et al. Multispecies interactions in biofilms and implications to safety of drinking water distribution system[J]. Microbiology and Biotechnology Letters, 2019, 47(4):473-486.
|
[8] |
MAKOVCOVA J, BABAK V, KULICH P, et al. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria[J]. Microbial Biotechnology, 2017, 10(4):819-832.
|
[9] |
WINGENDER J, FLEMMING H C. Biofilms in drinking water and their role as reservoir for pathogens[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6):417-423.
|
[10] |
SAXENA P, JOSHI Y, RAWAT K, et al. Biofilms:architecture, resistance, quorum sensing and control mechanisms[J]. Indian Journal of Microbiology, 2019, 59(1):3-12.
|
[11] |
KVICH L, BURMOLLE M, BJARNSHOLT T, et al. Do mixed-species biofilms dominate in chronic infections?-need forin situ visualization of bacterial organization[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:396.
|
[12] |
ZHU Z B, SHAN L L, ZHANG X Y, et al. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance[J]. Chemosphere, 2021, 264:128410.
|
[13] |
SAMROT A V, MOHAMED A A, FARADJEVA E, et al. Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds:a review[J]. Medicina-Lithuania, 2021, 57(8):839.
|
[14] |
PREST E I, SCHAAP P G, BESMER M D, et al. Dynamic hydraulics in a drinking water distribution system influence suspended particles and turbidity, but not microbiology[J]. Water, 2021, 13(1):109.
|
[15] |
MAKRIS K C, ANDRA S S, BOTSARIS G. Pipe scales and biofilms in drinking-water distribution systems:undermining finished water quality[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(13):1477-1523.
|
[16] |
AFONSO A C, GOMES I B, SAAVEDRA M J, et al. Bacterial coaggregation in aquatic systems[J]. Water Research, 2021, 196:117037.
|
[17] |
ELIAS S, BANIN E. Multi-species biofilms:living with friendly neighbors[J]. Fems Microbiology Reviews, 2012, 36(5):990-1004.
|
[18] |
RICE S A, WUERTZ S, KJELLEBERG S. Next-generation studies of microbial biofilm communities[J]. Microbial Biotechnology, 2016, 9(5):677-680.
|
[19] |
ZHANG W, SUN J, DING W, et al. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development[J]. Frontiers in Cellular and Infection Microbiology, 2015, 5:40.
|
[20] |
PRATT L A, KOLTER R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type Ⅰ pili[J]. Molecular Microbiology, 1998, 30(2):285-293.
|
[21] |
CASEY A, FOX E M, SCHMITZ-ESSER S, et al. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility[J]. Frontiers in Microbiology, 2014, 5:68.
|
[22] |
MADSEN J S, RODER H L, RUSSEL J, et al. Coexistence facilitates interspecific biofilm formation in complex microbial communities[J]. Environmental Microbiology, 2016, 18(8):2565-2574.
|
[23] |
KARYGIANNI L, REN Z, KOO H, et al. Biofilm matrixome:extracellular components in structured microbial communities[j]. trends in microbiology, 2020, 28(8):668-681.
|
[24] |
WANG R. Biofilms and meat safety:a mini-review[J]. Journal of Food Protection, 2019, 82(1):120-127.
|
[25] |
DUANIS-ASSAF D, DUANIS-ASSAF T, ZENG G H, et al. Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm[J]. Scientific Reports, 2018, 8:9350.
|
[26] |
MARINCOLA G, JASCHKOWITZ G, KIENINGER A K, et al. Plasmid-chromosome crosstalk in Staphylococcus aureus:a horizontally acquired transcription regulator controls polysaccharide intercellular adhesin-mediated biofilm formation[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:660702.
|
[27] |
DOMKA J, LEE J T, BANSAL T, et al. Temporal gene-expression in Escherichia coli K-12 biofilms[J]. Environmental Microbiology, 2007, 9(2):332-346.
|
[28] |
WANG M J, ZHAO L, WU H, et al. Cladodionen is a potential quorum sensing inhibitor against pseudomonas aeruginosa[J]. Marine Drugs, 2020, 18(4):205.
|
[29] |
WIEDENBECK J, COHAN F M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches[J]. Fems Microbiology Reviews, 2011, 35(5):957-976.
|
[30] |
MADSEN J S, BURMOLLE M, HANSEN L H, et al. The interconnection between biofilm formation and horizontal gene transfer[J]. Fems Immunology and Medical Microbiology, 2012, 65(2):183-195.
|
[31] |
LUO A, WANG F, SUN D, et al. Formation, development, and cross-species interactions in biofilms[J]. Frontiers in Microbiology, 2022, 12:757327.
|
[32] |
ZHANG Y J, ZHANG Y Y, LIU L N, et al. Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall[J]. Environmental Pollution, 2021, 288:117736.
|
[33] |
PENESYAN A, GILLINGS M, PAULSEN I T. Antibiotic discovery:combatting bacterial resistance in cells and in biofilm communities[J]. Molecules, 2015, 20(4):5286-5298.
|
[34] |
HUO L X, ZHAO S H, SHI B Y, et al. Bacterial community change and antibiotic resistance promotion after exposure to sulfadiazine and the role of UV/H2O2-GAC treatment[J]. Chemosphere, 2021, 283:131214.
|
[35] |
ABISADO R G, BENOMAR S, KLAUS J R, et al. Bacterial quorum sensing and microbial community interactions[J]. Mbio, 2018, 9(3):e02331-17.
|
[36] |
DI SOMMA A, MORETTA A, CANE C, et al. Antimicrobial and antibiofilm peptides[J]. Biomolecules, 2020, 10(4):652.
|
[37] |
SHAHROUR H, FERRER-ESPADA R, DANDACHE I, et al. AMPs as anti-biofilm agents for human therapy and prophylaxis[M]. Switzerland:Springer International Publishing Ag, 2019:257-279.
|
[38] |
MAGALHAES A P, JORGE P, PEREIRA M O. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections:insights through network and database construction[J]. Critical Reviews in Microbiology, 2019, 45(5/6):712-728.
|
[39] |
LIU W Z, RUSSEL J, BURMOLLE M, et al. Micro-scale intermixing:a requisite for stable and synergistic co-establishment in a four-species biofilm[J]. Isme Journal, 2018, 12(8):1940-1951.
|
[40] |
HABIMANA O, HEIR E, LANGSRUD S, et al. Enhanced surface colonization by Escherichia coli O157:H7 in biofilms formed by an acinetobacter calcoaceticus isolate from meat-processing environments[J]. Applied and Environmental Microbiology, 2010, 76(13):4557-4559.
|
[41] |
DAI D, RASKIN L, XI C. The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions[J]. Journal of Applied Microbiology, 2017, 123(6):1614-1627.
|
[42] |
ZHANG W, SILEIKA T, PACKMAN A I. Effects of fluid flow conditions on interactions between species in biofilms[J]. Fems Microbiology Ecology, 2013, 84(2):344-354.
|
[43] |
CORRE M H, DELAFONT V, LEGRAND A, et al. Exploiting the richness of environmental waterborne bacteria species to find natural legionella pneumophila competitors[J]. Frontiers in Microbiology, 2019, 9:3360.
|
[44] |
MAES S, de REU K, van WEYENBERG S, et al. Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses[J]. Bmc Microbiology, 2020, 20(1):373.
|
[45] |
SIMOES L C, SIMOES M, VIEIRA M J. Biofilm interactions between distinct bacterial genera isolated from drinking water[J]. Applied and Environmental Microbiology, 2007, 73(19):6192-6200.
|
[46] |
LI J, CHEN X J, LIN J F, et al. Antibiotic intervention redisposes bacterial interspecific interacting dynamics in competitive environments[J]. Environmental Microbiology, 2021, 23(12):7432-7444.
|
[47] |
SADIQ F A, BURMOLLE M, HEYNDRICKX M, et al. Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms[J]. Critical Reviews in Microbiology, 2021, 47(3):338-358.
|
[48] |
GHOUL M, MITRI S. The ecology and evolution of microbial competition[J]. Trends in Microbiology, 2016, 24(10):833-845.
|
[49] |
祝泽兵. 供水管网中的耐氯菌群及其耐氯机制研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
|
[50] |
LI Q, LIU L, GUO A L, et al. Formation of multispecies biofilms and their resistance to disinfectants in food processing environments:a review[J]. Journal of Food Protection, 2021, 84(12):2071-2083.
|
[51] |
de GRANDI A Z, PINTO U M, DESTRO M T. Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface[J]. World Journal of Microbiology & Biotechnology, 2018, 34(4):61.
|
[52] |
EVANS C R, KEMPES C P, PRICE-WHELAN A, et al. Metabolic heterogeneity and cross-Feeding in bacterial multicellular systems[J]. Trends in Microbiology, 2020, 28(9):732-743.
|
[53] |
ESTRELA S, TRISOS C H, BROWN S P. From metabolism to ecology:cross-feeding interactions shape the balance between polymicrobial conflict and mutualism[J]. American Naturalist, 2012, 180(5):566-576.
|
[54] |
YI L, DONG X, GRENIER D, et al. Research progress of bacterial quorum sensing receptors:classification, structure, function and characteristics[J]. Science of the Total Environment, 2021, 763:143031.
|
[55] |
ZHAO X, YU Z, DING T. Quorum-sensing regulation of antimicrobial resistance in bacteria[J]. Microorganisms, 2020, 8(3):425.
|
[56] |
SHARMA A, SINGH P, SARMAH B K, et al. Quorum sensing:its role in microbial social networking[J]. Research in Microbiology, 2020, 171(5/6):159-164.
|
[57] |
ZHOU L, ZHANG Y, GE Y, et al. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation[J]. Frontiers in Microbiology, 2020, 11:589640.
|
[58] |
RAJU MADDELA N, SHENG B, YUAN S, et al. Roles of quorum sensing in biological wastewater treatment:a critical review[J]. Chemosphere, 2019, 221:616-629.
|
[59] |
成婷婷, 冯媛, 王崇刚. 鲍曼不动杆菌群体感应抑制剂与生物膜形成的研究进展[J]. 中国感染与化疗杂志, 2022, 22(1):125-128.
|
[60] |
DIXON E F, HALL R A. Noisy neighbourhoods:quorum sensing in fungal-polymicrobial infections[J]. Cellular Microbiology, 2015, 17(10):1431-1441.
|
[61] |
MUKHERJEE S, BOSSIER B L. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6):371-382.
|
[62] |
KAUR A, CAPALASH N, SHARMA P. Communication mechanisms in extremophiles:exploring their existence and industrial applications[J]. Microbiological Research, 2019, 221:15-27.
|
[63] |
KOLENBRANDER P E, ANDERSEN R N, BLEHERT D S, et al. Communication among oral bacteria[J]. Microbiology and molecular biology reviews:MMBR, 2002, 66(3):486-505.
|
[64] |
PANDE S, KAFTAN F, LANG S, et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments[J]. Isme Journal, 2016, 10(6):1413-1423.
|
[65] |
SUN Z P, KOFFEL T, STUMP S M, et al. Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters[J]. Journal of Theoretical Biology, 2019, 465:63-77.
|
[66] |
WINTERMUTE E H, SILVER P A. Emergent cooperation in microbial metabolism[J]. Molecular Systems Biology, 2010, 6:407.
|
[67] |
SHOU W, RAM S, VILAR J M G. Synthetic cooperation in engineered yeast populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(6):1877-1882.
|
[68] |
YUAN L, SADIQ F A, WANG N, et al. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(22):3876-3891.
|
[69] |
SALGAR-CHAPARRO S J, LEPKOVA K, POJTANABUNTOENG T, et al. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness[J]. Applied and Environmental Microbiology, 2020, 86(7):e02885-19.
|
[70] |
JAMAL M, AHMAD W, ANDLEEB S, et al. Bacterial biofilm and associated infections[J]. Journal of the Chinese Medical Association, 2018, 81(1):7-11.
|
[71] |
da CRUZ NIZER W S, INKOVSKIY V, OVERHAGE J. Surviving reactive chlorine stress:responses of gram-negative bacteria to hypochlorous acid[J]. Microorganisms, 2020, 8(8):1220.
|
[72] |
BANSAL M, DHOWLAGHAR N, NANNAPANENI R, et al. Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite[J]. Food Microbiology, 2021, 96:103714.
|
[73] |
BYUN K H, HAN S H, YOON J W, et al. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin[J]. Food Control, 2021, 123:107838.
|
[74] |
LUO X R, ZHANG B P, LU Y H, et al. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure[J]. Journal of Hazardous Materials, 2022, 421:126682.
|
[75] |
WAAK M B, HOZALSKI R M, HALLE C, et al. Comparison of the microbiomes of two drinking water distribution systemswith and without residual chloramine disinfection[J]. Microbiome, 2019, 7:87.
|
[76] |
XUE Z, LEE W H, COBURN K M, et al. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters[J]. Environmental Science & Technology, 2014, 48(7):3832-3839.
|
[77] |
罗志逢. 供水管道生物膜生长的影响因素与控制方法研究[D]. 杭州:浙江大学, 2016.
|
[78] |
周玲玲. 给水管网中生物膜及硝化作用控制[D]. 哈尔滨:哈尔滨工业大学, 2010.
|
[79] |
LIPPONEN M T T, SUUTARI M H, MARTIKAINEN P J. Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems[J]. Water Research, 2002, 36(17):4319-4329.
|
[80] |
LI N, LI X, YANG Y L, et al. Secondary disinfection ensures biosafety of domestic hot water and its impact on biofilm bacterial community[J]. Desalination and Water Treatment, 2020, 173:186-196.
|
[81] |
FENG C, ZHU N, LI Y, et al. Microbial characteristics of the combined ozone and tea polyphenols or sodium hypochlorite disinfection in the pipe network[J]. Water, 2021, 13(13):1835.
|
[82] |
ZHANG K W, HU H, CHEN G. Mechanisms of microbial disinfectant resistance[J]. Progress in Biochemistry and Biophysics, 2022, 49(1):34-47.
|
[83] |
LIU G, ZHANG Y, KNIBBE W J, et al. Potential impacts of changing supply-water quality on drinking water distribution:a review[J]. Water Research, 2017, 116:135-148.
|
[84] |
LIU G, LUT M C, VERBERK J, et al. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution[J]. Water Research, 2013, 47(8):2719-2728.
|
[85] |
van DER WIELEN P W J J, VAN DER KOOIJ D. Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands[J]. Water Research, 2010, 44(17):4860-4867.
|
[86] |
RATZKE C, BARRERE J, GORE J. Strength of species interactions determines biodiversity and stability in microbial communities[J]. Nature Ecology & Evolution, 2020, 4(3):376-397.
|
[87] |
LIU Y Y, SHAN R R, CHEN G W, et al. Linking flow velocity-regulated EPS production with early-stage biofilm formation in drinking water distribution systems[J]. Water Supply, 2020, 20(4):1253-1263.
|
[88] |
逯清清. 给水管网环境条件对生物膜形成和水质的影响[D]. 合肥:合肥工业大学, 2016.
|
[89] |
LAUTENSCHLAGER K, HWANG C, LIU W T, et al. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks[J]. Water Research, 2013, 47(9):3015-3025.
|
[90] |
WANG H, MASTERS S, HONG Y J, et al. Effect of disinfectant, water age, and pipe material on occurrence and persistence of legionella, mycobacteria, pseudomonas aeruginosa, and two amoebas[J]. Environmental Science & Technology, 2012, 46(21):11566-11574.
|
[91] |
YE C S, XIAN X X, BAO R H, et al. Recovery of microbiological quality of long-term stagnant tap water in university buildings during the COVID-19 pandemic[J]. Science of the Total Environment, 2022, 806:150616.
|
[92] |
黄保国. 给水管网流速对水质和生物膜种群结构的影响[D]. 合肥:合肥工业大学, 2018.
|
[93] |
LEARBUCH K L G, SMIDT H, van DER WIELEN P W J J. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm[J]. Water Research, 2021, 194:116922.
|
[94] |
池年平, 董秉直, 姚若虚. 给水管网中微生物研究进展[J]. 水处理技术, 2010, 36(2):29-32.
|
[95] |
ZHANG X Y, LIN T, JIANG F C, et al. Impact of pipe material and chlorination on the biofilm structure and microbial communities[J]. Chemosphere, 2022, 289:133218.
|
[96] |
李相宜, 赵蓓, 游晓旭, 等. 供水管道管材的特性及应用综述[J]. 净水技术, 2021, 40(7):52-59.
|
[97] |
XU X X, LIU S M, SMITH K, et al. An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved[J]. Journal of Cleaner Production, 2020, 276:124079.
|
[98] |
LIU L, HU Q Y, LE Y, et al. Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems[J]. Process Biochemistry, 2017, 55:41-48.
|
[99] |
XU H J, LIU Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production[J]. Water Research, 2011, 45(17):5796-5804.
|
[100] |
JAYATHILAKE P G, JANA S, RUSHTON S, et al. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms[J]. Frontiers in Microbiology, 2017, 8:1865.
|
[101] |
WANG Z, KIM J, SEO Y. Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection byproducts[J]. Environmental Science & Technology, 2012, 46(20):11361-11369.
|
[102] |
MANDAL A, MANDAL R K, YANG Y, et al. In vitro characterization of chicken gut bacterial isolates for probiotic potentials[J]. Poultry Science, 2021, 100(2):1083-1092.
|
[103] |
马晓春, 代军, 徐磊, 等. 鲍曼不动杆菌生物膜形成机制研究进展[J]. 中国感染与化疗杂志, 2018, 18(1):124-128.
|
[104] |
WANG F, DENG L, HUANG F, et al. Flagellar motility is critical for salmonella entericaserovar typhimurium biofilm development[J]. Frontiers in Microbiology, 2020, 11:1695.
|
[105] |
WOOD T K, BARRIOS A F G, HERZBERG M, et al. Motility influences biofilm architecture in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2006, 72(2):361-367.
|
[106] |
PANG X, YUK H G. Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon[J]. Food Microbiology, 2019, 82:142-150.
|
[107] |
GUTTENPLAN S B, KEARNS D B. Regulation of flagellar motility during biofilm formation[J]. Fems Microbiology Reviews, 2013, 37(6):849-871.
|