Citation: | LIN Wenlong, ZHANG Yuzhu, LIU Chao, LIU Donghui, XING Hongwei, KANG Yue. ADVANCES IN RESEARCH ON SINTERING FLUE GAS POLLUTANTS' TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 248-258. doi: 10.13205/j.hjgc.202306032 |
[1] |
CIEPLIK M K, CARBONELL P J, MUÑOZ C, et al. On dioxin formation in iron ore sintering[J]. Environmental Science & Technology, 2003, 37(15):3323-3331.
|
[2] |
廖继勇, 储太山, 刘昌齐, 等. 烧结烟气脱硫脱硝技术的发展与应用前景[J]. 烧结球团, 2008,33(4):1-5.
|
[3] |
张春霞, 王海风, 齐渊洪. 烧结烟气污染物脱除的进展[J]. 钢铁, 2010, 45(12):1-11.
|
[4] |
中华人民共和国生态环境部. 2016-2019年全国生态环境统计年报[EB/OL]. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf.
|
[5] |
中华人民共和国生态环境部. 2020中国生态环境统计年报[EB/OL]. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/t20220218_969391.
shtml.
|
[6] |
SANY S B T, HASHIM R, SALLEH A, et al. Dioxin risk assessment:mechanisms of action and possible toxicity in human health[J]. Environmental Science and Pollution Research International, 2015, 22(24):19434-19450.
|
[7] |
MASAGUER V, OULEGO P, COLLADO S, et al. Characterization of sinter flue dust to enhance alternative recycling and environmental impact at disposal[J]. Waste Management, 2018, 79:251-259.
|
[8] |
周芸芸, 钱枫, 付颖. 湿法脱硫除尘产物中CaSO3分解的研究[J]. 环境污染与防治, 2006,28(4):245-248.
|
[9] |
中华人民共和国生态环境部. 2021年中国生态环境状况公报(摘录)[J]. 环境保护, 2022, 50(12):61-74.
|
[10] |
于恒, 王海风, 张春霞. 铁矿烧结污染物排放特征探讨[J]. 环境工程, 2014, 32(2):87-90.
|
[11] |
陈凯华. 铁矿石烧结过程中二氧化硫的生成机理及控制[J]. 烧结球团, 2007,32(4):13-17.
|
[12] |
卢熙宁. 钢铁行业烧结烟气多污染物协同净化工艺综述[J]. 冶金经济与管理, 2016(1):22-24.
|
[13] |
HU H, HUANG H, ZENG Z W, et al. The formation of NO<em>x during sintering[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(7/8/9/10/11/12):1228-1234.
|
[14] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125.
|
[15] |
PIRES J C M, ALVIM-FERRAZ M C M, MARTINS F G, et al. Carbon dioxide capture from flue gases using microalgae:engineering aspects and biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3043-3053.
|
[16] |
赵欣锋, 齐西伟, 程扬, 等. 铁矿烧结过程烟气排放规律分析[J]. 钢铁研究学报, 2022, 34(8):758-767.
|
[17] |
刘含笑, 吴黎明, 赵琳, 等. 钢铁行业CO2排放特征及治理技术分析[J]. 烧结球团, 2022, 47(1):38-47.
|
[18] |
王兆才, 刘臣, 李继淦, 等. 烧结烟气CO<em>x的生成机理及减排措施[J]. 烧结球团, 2021, 46(1):14-22.
|
[19] |
赵震宇, 姚舜, 杨朔鹏, 等. "双碳"目标下:中国CCUS发展现状、存在问题及建议[J/OL]. 环境科学:1-15[2022-10-21
].DOI: 10.13227/j.hjkx.202203136.
|
[20] |
田国垒. 我国首个百万吨级CCUS项目全面建成投产[N]. 工人日报, 2022, (6
).
|
[21] |
王成福. 工业微细粉尘的危害与有效捕集研究[J]. 科技通报, 2013, 29(1):185-189.
|
[22] |
杨晓东, 张玲, 姜德旺,等. 钢铁工业废气及PM2.5排放特性与污染控制对策[J]. 工程研究-跨学科视野中的工程, 2013, 5(3):240-251.
|
[23] |
朱彤. 钢铁烧结烟气镁法脱硫脱硝及资源化技术研究[D]. 北京:清华大学, 2017.
|
[24] |
夏平,张兴强,黄永昌.韶钢4号烧结机烟气脱硫实践[J]. 烧结球团, 2010, 35(6):39-42.
|
[25] |
冷廷双, 时朝昆, 廖洪强, 等. 氨法脱硫技术在烧结烟气治理领域应用研究[J]. 环境工程, 2009, 27(3):87-89.
|
[26] |
杨光, 张淑会, 杨艳双. 烧结烟气中气态污染物的减排技术现状及展望[J]. 矿产综合利用, 2021(1):45-56.
|
[27] |
关毅鹏, 刘国昌, 张召才, 等. 膜吸收法海水烟气脱硫中试研究[J]. 膜科学与技术, 2013, 33(5):73-77.
|
[28] |
陈坚军, 王冠华. 海水烟气脱硫技术研究进展[J]. 广东化工, 2010, 37(6):74-75.
|
[29] |
姜秀平, 刘有智. 湿法烟气脱硫技术研究进展[J]. 应用化工, 2013, 42(3):535-538.
|
[30] |
贾建勇,黄永建. 双碱法技术在280 m2烧结机烟气脱硫中的应用[J]. 河北冶金, 2017(8):27-29.
|
[31] |
石林, 李孟飞, 兰惠生, 等. 柠檬酸钠法烟气脱硫技术中硫酸钠的生成控制[J]. 华南理工大学学报(自然科学版), 2007, (6):111-115.
|
[32] |
魏占鸿, 刘陈, 唐照勇, 等. 柠檬酸钠法治理冶炼厂非正常排空烟气的生产实践[J]. 硫酸工业, 2013(1):29-33.
|
[33] |
XU G W, GUO Q M, KANEKO T, et al. A new semi-dry desulfurization process using a powder-particle spouted bed[J]. Advances in Environmental Research, 2000, 4(1):9-18.
|
[34] |
李晓斐, 傅大放, 马光. 半干法烟气脱硫新技术:粉末-颗粒喷动床技术[J]. 环境污染治理技术与设备, 2002,3(6):53-56.
|
[35] |
张晓刚, 宋存义, 王亮, 等. 密相干塔技术在烧结烟气脱硫中的应用[J]. 钢铁, 2007,42(7):79-82.
|
[36] |
张宇. 唐钢210平烧结机密相干塔烟气脱硫技术改造[D]. 唐山:华北理工大学, 2017.
|
[37] |
邢芳芳, 姜琪, 张亚志, 等. 钢铁工业烧结烟气多污染物协同控制技术分析[J]. 环境工程, 2014, 32(4):75-78.
|
[38] |
张国志. 活性炭烧结机烟气有害成分协同处理技术[J]. 环境工程, 2014, 32(2):107-109.
|
[39] |
魏淑娟, 王爽, 周然. 我国烧结烟气脱硫现状及脱硝技术研究[J]. 环境工程, 2014, 32(2):95-97
,142.
|
[40] |
马又琳, 谢红, 李懿. 活性炭在综合治理烧结烟气中的应用发展现状[J]. 四川冶金, 2019, 41(5):11-14.
|
[41] |
ZHANG Z Q, LI J T, TIAN J, et al. The effects of Mn-based catalysts on the selective catalytic reduction of NO<em>x with NH3 at low temperature:a review[J]. Fuel Processing Technology, 2022, 230:107213.
|
[42] |
PAN K K, YU F, LIU Z S, et al. Enhanced low-temperature CO-SCR denitration performance and mechanism of two-dimensional CuCoAl layered double oxide[J]. Journal of Environmental Chemical Engineering, 2022, 10(3).
|
[43] |
史丽珠, 毛星舟, 惠尉添, 等. 锰基催化剂低温选择性催化还原脱硝研究进展[J]. 化工环保, 2021, 41(5):559-564.
|
[44] |
凌绍华, 景长勇, 马婧, 等. 选择性非催化还原法烟气脱硝工业试验[J]. 化工环保, 2013, 33(4):304-307.
|
[45] |
XIAO X, XIONG S C, LI B, GENG Y, et al. Role of WO3 in NO Reduction with NH3 over V2O5-WO3/TiO2:a new insight from the kinetic study[J]. Catalysis Letters, 2016, 146(11):2242-2251.
|
[46] |
DU Y, GAO F Y, ZHOU Y S, et al. Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106372.
|
[47] |
FU M F, LI C T, LU P, et al. A review on selective catalytic reduction of NO<em>x by supported catalysts at 100~300℃-catalysts, mechanism, kinetics[J]. Catalysis Science & Technology, 2014, 4:14-25.
|
[48] |
柳召刚,张蕊,李梅,等.掺杂型Y-Ce/Fe2O3催化剂的制备及脱硝性能研究[J]. 现代化工, 2015, 35(11):118-121.
|
[49] |
NIE W J, SHA X L, ZHANG L, et al. Research on the denitration mechanism of fly ash catalysts modified by low-temperature plasma technology[J]. AIP Advances, 2017, 7(8).
|
[50] |
NAKANO M, MORII K, SATO T. Factors accelerating dioxin emission from iron ore sintering machines[J]. ISIJ International, 2009, 49(5):729-734.
|
[51] |
JI Z Y, HUANG B B, GAN M, et al. Dioxins control as co-processing water-washed municipal solid waste incineration fly ash in iron ore sintering process[J]. Journal of Hazardous Materials, 2022, 423(PB):127138-127138.
|
[52] |
MORENO A I, FONT R, FRANCISCA G M. Inhibition effect of polyurethane foam waste in dioxin formation[J]. Waste Management, 2019, 97(C):19-26.
|
[53] |
DING X X, YANG Y T, ZENG Z Q,et al. Insight into the transformation behaviors of dioxins from sintering flue gas in the cyclic thermal regeneration by the V2O5/AC catalyst-sorbent[J]. Environmental Science & Technology, 2022.
|
[54] |
李咸伟, 崔健, 杜洪缙, 等. 烧结废气循环与深度净化技术的研发与应用[C]//2014年全国冶金能源环保生产技术会. 武汉,2014.
|
[55] |
龙红明, 吴雪健, 李家新, 等. 烧结过程二噁英的生成机理与减排途径[J]. 烧结球团, 2016, 41(3):46-51.
|
[56] |
CHUN T J, LONG H M, DI Z X,et al. Novel technology of reducing SO2 emission in the iron ore sintering[J]. Process Safety and Environmental Protection, 2017, 105:297-302.
|
[57] |
周末. 活性炭吸附法在烧结烟气治理领域的进展及前景[C]//烧结工序节能减排技术研讨会,中国福建三明,2009.
|
[58] |
聂亚明. 活性炭法烟气净化技术最新研发与应用[J]. 科技与创新, 2015(3):131.
|
[59] |
王维竹, 郭家秀, 孙明超, 等. 活性炭法烟气脱硫技术应用研究进展[C]//2012中国环境科学学会学术年会,中国广西南宁,2012.
|
[60] |
吴立军. 改性柱状活性炭脱硫脱硝性能研究[D]. 马鞍山:安徽工业大学, 2016.
|
[61] |
HU B, YI Y, LIANG C, et al. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators[J]. Powder Technology, 2018, 335:186-194.
|
[62] |
CAO M Y, GU F, RAO C C, et al. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5[J]. Science of the Total Environment, 2019, 666:1011-1021.
|
[63] |
CHENG Y, LI L K, HE W J, et al. Seeds embedded epitaxial growth strategy for PAN@LDH membrane with Mortise-Tenon structure as efficient adsorbent for particulate matter capture[J]. Applied Catalysis B:Environmental, 2020, 263(C):118312.
|
[64] |
闫伯骏, 邢奕, 路培, 等. 钢铁行业烧结烟气多污染物协同净化技术研究进展[J]. 工程科学学报, 2018, 40(7):767-775.
|
[65] |
张逸伟, 唐海荣, 何勇, 等. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4):1732-1742.
|
[66] |
梁磊. 臭氧氧化烟气脱硝工艺技术路线探讨[J]. 华北电力技术, 2017(9):55-59.
|
[67] |
赵冯韬, 王钊. 利用烟气循环协同脱硫脱硝处理烧结废气的可行性研究[J]. 低碳世界, 2018(10):7-8.
|
[68] |
邱明英. 烧结烟气多污染物一体化控制工艺的应用[J]. 中国环保产业, 2018(4):37-40.
|
[69] |
于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展[J]. 钢铁, 2019, 54(9):1-11.
|
[70] |
王新东, 侯长江, 田京雷. 钢铁行业烟气多污染物协同控制技术应用实践[J]. 过程工程学报, 2020, 20(9):997-1007.
|
[71] |
郄俊懋, 张春霞, 王海风,等.铁矿烧结烟气污染物治理趋势及协同治理工艺分析[J]. 环境工程, 2016, 34(10):80-86.
|
[72] |
纪光辉. 烧结烟气超低排放技术应用及展望[J]. 烧结球团, 2018, 43(2):59-63.
|
[73] |
廖继勇, 郑浩翔, 甘敏, 等. 烧结烟气CO的产生及治理途径:源头及过程控制技术[J]. 烧结球团, 2021, 46(2):8-16.
|
[74] |
范晓慧, 甘敏, 季志云, 等. 复合气体介质烧结的节能减排技术开发与应用[J]. 钢铁, 2020, 55(8):62-69
,74.
|
[75] |
GAN M, FAN X H, CHEN X L,et al. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels[J]. ISIJ International, 2012, 52(9):1574-1578.
|
[76] |
GAN M JI Z Y, FAN X H, et al. Insight into the high proportion application of biomass fuel in iron ore sintering through CO-containing flue gas recirculation[J]. Journal of Cleaner Production, 2019, 232:1335-1347.
|
[77] |
ZHANG S M, GAO N B, QUAN C, et al. Autothermal CaO looping biomass gasification to increase process energy efficiency and reduce ash sintering[J]. Fuel, 2020, 277:118199.
|
[78] |
甘敏, 李浩锐, 范晓慧, 等. 果核生物质炭燃烧特性及其应用于烧结的减排行为[J]. 烧结球团, 2022, 47(1):65-69
,126.
|
[79] |
LIU Y S, YANG Y, LI Z Y, et al. NOx removal with efficient recycling of NO2 from iron-ore sintering flue gas:a novel cyclic adsorption process[J]. Journal of Hazardous Materials, 2020,407:124380.
|
[80] |
ZHANG Y H, MENG X H, HU P, et al. Reutilization of industrial ultrafine carbon ash (PM2.5) as rubber reinforcement filler[J]. Environmental Progress & Sustainable Energy, 2016, 35(4):1132-1138.
|