MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
Citation:
MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
Citation:
MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
From a sustainable development perspective, reducing the carbon emissions of municipal facilities is an important step towards the development of ecological civilization. Trenchless pipeline rehabilitation, which is energy-saving, environmentally friendly, and low-carbon, represents a major trend in the pipeline repairing industry. In this paper, based on a case of pipeline network repairment in Shehong City, Sichuan Province, carbon footprint tracking of the pipeline repair material production stage, material and equipment transportation stage, and construction stage was conducted. The results showed that the carbon emissions during the production stage were 11263.14 kg CO2e, while those during the transportation and construction stages were 134.78 kg CO2e and 539.12 kg CO2e, respectively, accounting for approximately 94.35%, 1.13%, and 4.52% of the total carbon emissions. Material production was found to be the largest carbon emissions stage, and thus it is the key to carbon emissions controlling in the CIPP process. Sensitivity analysis was conducted on the materials and energy used during the production. The resin was found to be the most sensitive, followed by non-woven fabric. Optimizing and controlling their usage will be important for reducing carbon emissions in cured-in-place rehabilitation of urban drainage pipeline.
KAUSHAL V, NAJAFI M, SERAJIANTEHRANI R.Environmental impacts of conventional open-cut pipeline installation and trenchless technology methods:state-of-the-art review[J].Journal of Pipeline Systems Engineering and Practice, 2020, 11(2):1-9.
ALSADI A, MATTHEWS J C, MATTHEWS E.Environmental impact assessment of the fabrication of pipe rehabilitation materials[J].Journal of Pipeline Systems Engineering and Practice, 2020, 11(1):1-7.
ALSADI A A, MATTHEWS J C.Evaluation of carbon footprint of pipeline materials during installation, operation, and disposal phases[J].Journal of Pipeline Systems Engineering and Practice, 2020, 11(2):1-13.