Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
TAN Qiong. PROFILING ON POLLUTION OF URBAN DRAINAGE PUMPING OUTFLOW DURING WET WEATHER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 64-68. doi: 10.13205/j.hjgc.202311012
Citation: TAN Qiong. PROFILING ON POLLUTION OF URBAN DRAINAGE PUMPING OUTFLOW DURING WET WEATHER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 64-68. doi: 10.13205/j.hjgc.202311012

PROFILING ON POLLUTION OF URBAN DRAINAGE PUMPING OUTFLOW DURING WET WEATHER

doi: 10.13205/j.hjgc.202311012
  • Received Date: 2023-08-16
    Available Online: 2023-12-25
  • Unsupervised learning with K-means clustering is used to identify pollution characteristics of urban drainage pumping outflow during wet weather. Indicators including pumping station asset property and behavior data are chosen and then profiled for over 200 pumping stations of Shanghai downtown area. It shows that these pumping stations are classified into 4 clusters including low-frequency high-concentration, high-frequency low-concentration, high-frequency high-pollution, and medium-frequency medium-pollution, and the last 2 clusters are of higher priority for pollution control measures. The method used to profile pumping stations shows reasonable results and is of great value for policymakers to deploy drainage quality improving and efficiency enhancing measures.
  • loading
  • [1]
    谭琼, 李田, 高秋霞.上海市排水系统雨天出流的初期效应分析[J].中国给水排水, 2005(11):26-30.
    [2]
    李田, 戴梅红, 张伟, 等.水泵强制排水系统合流制溢流的污染源解析[J].同济大学学报(自然科学版), 2013, 41(10):1513-1518, 1525.
    [3]
    张梦, 李田.上海市排水系统雨天出流及地表径流沉降特性初探[J].环境污染与防治, 2007(9):668-670.
    [4]
    丁敏.上海市政排水泵站功能延伸的探索与实践[J].净水技术, 2020, 39(增刊1):231-234.
    [5]
    顾一鸣, 马艳.防汛泵站出流污染削减对策探索[J].净水技术, 2021, 40(10):138-143.
    [6]
    程琦, 杨杰, 罗名海, 等.武汉市旧城核心区多要素画像与评价研究[J].地理空间信息, 2020, 18(12):14-18

    , 6.
    [7]
    陆晓, 徐春雷, 冷钊莹, 等.基于数据驱动方法的疫情阶段电力用户负荷特性画像模型[J].电力建设, 2021, 42(2):93-106.
    [8]
    张艳丰, 邹凯, 彭丽徽, 等.数字空间视角下智慧城市全景数据画像实证研究[J].情报学报, 2020, 39(12):1330-1339.
    [9]
    王爱杰, 许冬件, 钱志敏, 等.我国智慧水务发展现状及趋势[J].环境工程, 2023, 41(9):46-53.
    [10]
    TAN P N, STEINBACH M, KUMAR V.数据挖掘导论[M].范明等, 译.北京:人民邮电出版社, 2018:310-319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return