Citation: | CAO Qiang, LI Yuran, WANG Bin, WANG Jiancheng, ZHU Tingyu. DEACTIVATION MECHANISM OF γ-Al2O3 BASED CATALYSTS FOR THE CATALYTIC HYDROLYSIS OF CARBONYL SULFIDE IN PRESENCE OF HCl[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 182-189. doi: 10.13205/j.hjgc.202312022 |
[1] |
World Steel in Figures 2023[EB/OL] https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/.
|
[2] |
郭玉华.高炉煤气净化提质利用技术现状及未来发展趋势[J].钢铁研究学报, 2020, 32(7): 525-531.
|
[3] |
王斌,林玉婷,李玉然,等.高炉煤气羰基硫催化水解过程影响因素[J].洁净煤技术, 2021, 27(5): 233-238.
|
[4] |
CAO R, NING P, WANG X Q, et al. Low-temperature hydrolysis of carbonyl sulfide in blast furnace gas using Al2O3-based catalysts with high oxidation resistance[J]. Fuel, 2021,310: 122295.
|
[5] |
刘艳敏,辛渊,李保良,等.氯元素对高炉煤气管道的腐蚀与预防[J].天津冶金,2022(5):8-10,14.
|
[6] |
程正霖,朱晓华,李鹏飞.高炉生产过程中氯的来源、迁移转化及影响[J].环境工程,2021,39(4):86-91.
|
[7] |
李雯博,史连军,王梦,等.合成气制甲醇CuZnAl催化剂失活因素研究[J].天然气化工(C1化学与化工),2020,45(5):31-38.
|
[8] |
李春虎,郭汉贤,谈世韶.碱改性γ-Al2O3催化剂表面碱强度分布与COS水解活性的研究[J].分子催化,1994(4):305-312.
|
[9] |
YAO X J, GAO F, DONG L. The application of incorporation model in γ-Al2O3 supported single and dual metal oxide catalysts: a review[J]. Chin J Catal, 2013,34: 1975-1985.
|
[10] |
LI C M, ZHAO S Y, YAO X L, et al. The catalytic mechanism of intercalated chlorine anions as active basic sites in MgAl-layered double hydroxide for carbonyl sulfide hydrolysis[J]. Environmental Science and Pollution Research, 2022, 29(7):10605-10616.
|
[11] |
CHANG F Y, CHEN J C, WEY M Y. Effects of oxygen and hydrogen chloride on NO removal efficiency by Rh/Al2O3 and Rh-Na/Al2O3 catalysts[J]. Applied Catalysis A: General, 2009, 359(1/2): 88-95.
|
[12] |
ZHAO S Z, YI H H, TANG X L, et al. Calcined ZnNiAl hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal[J]. Catalysis Today, 2019, 327: 161-167.
|
[13] |
YI H H, ZHAO S Z, TANG X L, et al. Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn-Ni-Al catalyst[J]. Catalysis Communications, 2011, 12(15): 1492-1495.
|
[14] |
ZHAO S Z, YI H H, TANG X L, et al. Low temperature hydrolysis of carbonyl sulfide using Zn-Al hydrotalcite-derived catalysts[J]. Chemical Engineering Journal, 2013, 226: 161-165.
|
[15] |
KIM S, GUPTA N K, BAE J, et al. Fabrication of coral-like Mn2O3/Fe2O3 nanocomposite or room temperature removal of hydrogen sulfide[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105216.
|
[16] |
GUPTA N K, BAE J, KIM K S. Metal organic framework derived NaCoxOy for room temperature hydrogen sulfide removal[J]. Scientific Reports, 2021, 11(1): 14740.
|
[17] |
MENG W, WANG X, DAI Q, et al. Catalytic combustion of chlorobenzene over Mn-Ce/Al2O3 catalyst promoted by Mg[J]. Catalysis Communications, 2010, 11(12):1022-1025.
|
[18] |
WANG Q, LIN F, ZHOU J, et al. Effect of HCl and o-DCBz on NH3-SCR of NO over MnOx/TiO2 and MnOx-CeO2/TiO2 catalysts[J]. Applied Catalysis A: General, 2020, 605: 117801.
|
[19] |
LIN F, WANG Q L, HUANG X L, et al. Investigation of chlorine-poisoning mechanism of MnOx/TiO2 and MnOx-CeO2/TiO2 catalysts during o-DCBz catalytic decomposition: experiment and first-principles calculation[J]. Journal of Environmental Management,2021: 298.
|
[20] |
李凯. COS、CS2水解催化剂的开发及机理研究[D].昆明:昆明理工大学,2013.
|