Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHU Yongqiang, XU Tingting, SHEN Qian. RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012
Citation: ZHU Yongqiang, XU Tingting, SHEN Qian. RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012

RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O

doi: 10.13205/j.hjgc.202403012
  • Received Date: 2022-10-31
    Available Online: 2024-05-31
  • MFC-A2/O is a new type of bioelectrochemical system, which can convert chemical energy into electricity while degrading organic pollutants in wastewater. It further promotes the implementation of the goal of Synergize the Reduction of Pollution and Carbon Emissions, and has important reference value for the upgrading of sewage treatment systems in the future. Combined with the research of many scholars on the performance of MFC-A2/O systems for nitrogen removal and electricity generation, this paper introduces the working principle of MFC-A2/O, reviews the system structure (electrode material, battery configuration, inoculated microorganisms) and operating parameters (C/N, HRT, external resistance, pH, and other conditions). At the same time, this paper summarizes the current problems and deficiencies of the existing systems, discusses their advantages and development prospects in nitrogen removal and electricity generation performance, and provides a reference for the optimization of the MFC-A2/O system.
  • loading
  • [1]
    LI X H, ZHU W G, MENG G J, et al. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration[J]. Journal of Environmental Management, 2020, 273:111-120.
    [2]
    SAMAL K, DASH R R, BHUNIA P. Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater:a statistical and kinetic modelling approach[J]. Science of the Total Environment, 2018, 645:156-169.
    [3]
    TEMEL F A, OZYAZICI G, USLU V R, et al. Full scale subsurface flow constructed wetlands for domestic wastewater treatment:3 years' experience[J]. Environmental Progress & Sustainable Energy, 2018, 37(4):1348-1360.
    [4]
    TURKER O C, TURE C, BOCUK H, et al. Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution[J]. Environmental Science and Pollution Research International, 2016, 23(19):19302-19316.
    [5]
    QI J J, ZHU F F, WEI X, et al. Comparison of biodiesel production from sewage sludge obtained from the A2/O and MBR processes by in situ transesterification[J]. Waste Manag, 2016, 49:212-220.
    [6]
    GAO Z Q, CAI L M, LIU M, et al. Total mercury and methylmercury migration and transformation in an A2/O wastewater treatment plant[J]. The Science of the Total Environment, 2020, 710:136384.
    [7]
    WANG C, LIU Y, LV W Z. Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A2/O system[J]. The Science of the Total Environment, 2019, 660:817-825.
    [8]
    JIANG L Y, LIU Y, GUO F J, et al. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/aerobic membrane bioreactor with limited aeration[J]. Bioresour Technol, 2021, 340:125728.
    [9]
    ZHAO W H, YONG Z, LV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302:296-304.
    [10]
    WANG J, DU C, QIAN F, et al. Enhanced treatment of pharmaceutical wastewater by an improved A2/O process with ozone mixed municipal wastewater[J]. Water, 2020, 12(10):2771.
    [11]
    LIU H Y, LI H, FANG C R, et al. Removal of Di-n-butyl phthalate from aged leachate under optimal hydraulic condition of leachate treatment process and in the presence of its dominant bacterial strains[J]. Ecotoxicology and Environmental Safety, 2021, 222:112532.
    [12]
    TONG Y, WEI J L, MO R, et al. Photocatalytic microbial fuel cells and performance applications:a review[J]. Frontiers in Chemistry, 2022, 10:953434.
    [13]
    SHRIVASTAVA A, SHARMA R. Lignocellulosic biomass based microbial fuel cells:performance and applications[J]. Journal of Cleaner Production, 2022, 361:132269.
    [14]
    RAMYA M, PONNUSAMY S K. A review on recent advancements in bioenergy production using microbial fuel cells[J]. Chemosphere, 2021, 288:132512.
    [15]
    VIDHYESWARI D, SURENDHAR A, BHUVANESHWARI S S. General aspects and novel pems in microbial fuel cell technology:a review[J]. Chemosphere, 2022, 24:136454.
    [16]
    JIANG M H, XU T, CHEN S L. A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output[J]. Applied Energy, 2020, 260:114336.
    [17]
    YOON J, AHN Y, SCHRODER U. Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability[J]. Journal of Power Sources, 2018, 398:209-214.
    [18]
    XIAO B Y, LUO M, WANG X, et al. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process[J]. Waste Management, 2017, 69:346-352.
    [19]
    DUNG N, BABEL S. Insights on microbial fuel cells for sustainable biological nitrogen removal from wastewater:a review[J]. Environmental Research, 2021, 204:112095.
    [20]
    SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology, 2015, 195:223-230.
    [21]
    LI Z, ZHANG X W, LIN J, et al. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system[J]. Bioresource Technology, 2010, 101(12):4440-4445.
    [22]
    侯登峰, 张皓驰, 李先宁. 微生物燃料电池对废水脱氮性能的影响因素综述[J]. 环境污染与防治, 2022, 44(8):1091-1096.
    [23]
    郑琳姗, 张秀玲, 李惠雨, 等. 微生物燃料电池技术及其影响因素研究进展[J]. 精细化工, 2021, 38(1):1-8.
    [24]
    付进南, 王晓慧, 海热提, 等. A2/O耦合MFC工艺的启动及C/N对其产电性能的影响[J]. 环境工程学报, 2015, 9(11):5369-5375.
    [25]
    王存豹. 与A/O工艺相结合的双室MFC脱氮除碳及其产电性能的研究[D]. 杭州:浙江大学, 2016.
    [26]
    吴伟杰. 类A/O式无膜微生物燃料电池处理生活污水的研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
    [27]
    刘睿, 王晓慧, 海热提, 等. 活性炭优化生物阴极提升微生物燃料电池产电性能[J]. 环境科学学报, 2015, 35(7):2059-2063.
    [28]
    付进南. MFC耦合A2/O工艺产电及污水处理性能研究[D]. 北京:北京化工大学, 2015.
    [29]
    张克, 田双超, 窦雪雁, 等. 厌氧/好氧生物接触氧化工艺耦合微生物燃料电池技术处理农村生活污水[J]. 环境工程, 2022, 40(3):139-146.
    [30]
    高秀红, 刘子明, 曹玲, 等. A/O-MFC处理垃圾渗滤液与产电性能研究[J]. 应用化工, 2020, 49(2):402-405.
    [31]
    高晟. 类A2/O生物阴极微生物燃料电池污水处理及污泥减量研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [32]
    刘睿, 高艳梅, 王晓慧, 等. 水力停留时间对MFC-A2/O工艺处理生活污水的影响[J]. 环境科学学报, 2017, 37(2):680-685.
    [33]
    秦悦, 林小秋, 郑琳姗, 等. 电极改性强化微生物燃料电池产电同步降解有机污染物研究进展[J]. 精细化工, 2021, 38(9):1737-1745

    ,1756.
    [34]
    ARYAL R, BELTRAN D, LIU J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell[J]. International Journal of Green Energy, 2019, 16(15):1-9.
    [35]
    JIAN M J, XUE P, SHI K R, et al. Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode[J]. Journal of Hazardous Materials, 2020, 388:122123-122132.
    [36]
    罗帝洲, 许玫英, 杨永刚. 微生物燃料电池串并联研究及应用[J].环境化学, 2020, 39(8):2227-2236.
    [37]
    VILLASENOR J, CAPILLA P, RODRIGO M, et al. Operation of a horizontal subsurface flow constructed wetland:microbial fuel cell treating wastewater under different organic loading rates[J]. Water Research, 2013, 47(17):6731-6738.
    [38]
    ZHUANG L, YUAN Y, WANG Y Q, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123:406-412.
    [39]
    FANG Z, CAO X, LI X X, et al. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238(4):450-460.
    [40]
    YU B, LIU C L, WANG S Y, et al. Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature[J]. Science of the Total Environment, 2020, 724:138017.
    [41]
    LI H, CAI Y, GU Z L, et al. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J]. Chemosphere, 2020, 248:126014.
    [42]
    张逸驰, 蒋昭泓, 刘颖. 电化学活性微生物在微生物燃料电池阳极中的应用[J]. 分析化学, 2015, 43(1):155-163.
    [43]
    牛雨薇. 微生物燃料电池细菌电子传递途径及产电机制研究[D]. 西安:西安建筑科技大学, 2020.
    [44]
    XIE B Z, LIU B J, YI Y, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic-Anoxic-Oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207:109-117.
    [45]
    LIU R, TURSUN H, HOU X S, et al. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage[J]. Bioresource Technology, 2017, 241:439-447.
    [46]
    ALBERTSEN M, HANSEN B S, SAUNDERS A M, et al. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal[J]. ISME, 2012, 6 (6), 1094-1106.
    [47]
    MAO Y P, XIA Y, ZHANG T. Characterization of Thauera-dominated hydrogen oxidizing autotrophic denitrifying microbial communities by using high throughput sequencing[J]. Bioresource Technology, 2013, 128, 703-710.
    [48]
    LIU C M, LIU L, XU B, et al. Effects of inlet substrate and buffer concentrations on MFC performance[J]. Environmental Science & Technology, 2015, 38(2):48-51.
    [49]
    YUAN Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(13):6887-6891.
    [50]
    YAN X J, LEE H S, LI N, et al. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110184.
    [51]
    LI M, WU H M, ZHANG J, et al. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent:effect of C/N ratios[J]. Bioresource Technology, 2017, 240:157-164.
    [52]
    VILLASENOR J, CAPILLA P, RODRIGO M A, et al. Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates[J]. Water Res, 2013, 47(17):6731-6738.
    [53]
    WEN Y, CHEN Y, ZHENG N, et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010, 101(19):7286-7292.
    [54]
    李哲远. 分段进水双阴极MFC耦合A2/O工艺脱氮产电研究[D]. 西安:西安工程大学, 2020.
    [55]
    郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6):12-15.
    [56]
    陈杰云. 多级 A/O+好氧生物膜组合工艺特性及处理污水效能研究[D]. 重庆:重庆大学, 2013.
    [57]
    GUPTA R, BEKELE W, GHATAK A. Harvesting energy of interaction between bacteria and bacteriophage in a membrane-less fuel cell[J]. Bioresource Technology, 2013, 147:654-657.
    [58]
    LI X H, ZHU N W, WANG Y, et al. Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells:effects of HRT and non-precious metallic catalyst[J]. Bioresource Technology, 2013, 128:454-460.
    [59]
    KIM B, CHANG I S. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control[J]. Bioresource Technology, 2018, 262:338-341.
    [60]
    LIU T, YU Y Y, LI D Z, et al. The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells[J]. RSC Advances, 2016, 6:20317-20323.
    [61]
    ZHANG F, HE Z. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells[J]. J Chem Technol Biotechnol, 2011, 87:153-159.
    [62]
    荣宏伟, 王佳, 储昭瑞, 等. 外阻对双室微生物燃料电池性能的影响[J]. 水处理技术, 2019, 45(1):46-50.
    [63]
    袁晓东. 基于A/O工艺的双室MFC脱氮除磷及产电性能的研究[D]. 张家口:河北建筑工程学院, 2020.
    [64]
    陈青, 周顺桂, 袁勇, 等. 外阻对污泥微生物燃料电池产电以及有机物降解的影响[J]. 生态环境学报, 2011, 20(5):946-950.
    [65]
    张建民, 李哲远, 崔心水, 等. 外电阻对双阴极微生物燃料电池脱氮产电性能的影响[J]. 环境工程学报, 2020, 14(7):1762-1770.
    [66]
    YUANG Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(13):6887-6891.
    [67]
    OLIVEIRA V B, SIMOES M, MELO L F, et al. Overview on the developments of microbial fuel cells[J]. Biochemical Engineering Journal, 2013, 73:53-64.
    [68]
    张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州:浙江大学, 2014.
    [69]
    YANG N, REN Y P, LI X F, et al. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell[J]. Bioelectrochemistry, 2017, 115:41-46.
    [70]
    YONGTAE A, BRUCE E L. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells[J]. Bioresource Technology, 2013, 132:436-439.
    [71]
    OUYANG T C, HU X, SHI X M, et al. Mathematical modeling and performance evaluation of a cathodic bi-population microfluidic microbial fuel cell[J]. Energy Conversion and Management, 2022, 267(4):115900.
    [72]
    CLAUWAERT P, RABAEY K, AELTERMAN P, et al. Biological denitrification in microbial fuel cells[J]. Environ Sci Technol, 2007, 41:3354-3360.
    [73]
    KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems:a review[J]. Bioresource Technology, 2014, 153:351-360.
    [74]
    ZHAO J Q, WU J N, LI X L, et al. The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures[J]. Frontiers in Microbiology, 2017, 8:9.
    [75]
    YU C P, LIANG Z, DAS A, et al. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques[J]. Water Research, 2011, 45(3):1157-1164.
    [76]
    GUO J, CHENG J P, LI B B, et al. Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations[J]. Journal of Electroanalytical Chemistry, 2019, 833:433-440.
    [77]
    赵俊娜. 低负荷运行时内回流比对A2/O工艺脱氮的影响[J]. 中国给水排水, 2022, 38(5):81-83.
    [78]
    赵煜, 李鹏, 王晓斌, 等. 温度对微生物燃料电池电化学性能的影响[J]. 煤炭转化, 2012, 35(4):89-93.
    [79]
    JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology, 2009, 100:717-723.
    [80]
    刘志华, 刘春华, 夏畅斌, 等. 温度对淀粉酶强化污泥为燃料微生物燃料电池的影响[J]. 环境工程学报, 2014, 8(6):2543-2547.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return