| Citation: | WANG Zhenran, PENG Yunlan, LIU Yiqing, FU Yongsheng. HYDROXYLAMINE-NITRILOTRIACETIC ACID ENHANCED Fe(Ⅲ)/H2O2 SYSTEM FOR DEGRADATION OF ORANGE G[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 111-118. doi: 10.13205/j.hjgc.202404013 | 
	                | [1] | 
					 袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62. 
					
					 | 
			
| [2] | 
					 沈九兵, 谭牛高, 李志超, 等. 印染丝光淡碱液MVR蒸馏系统研究[J]. 现代化工, 2022, 42(6): 206-210. 
					
					 | 
			
| [3] | 
					 张庆云, 宋静茹, 谢学辉, 等. 果糖共代谢强化功能菌群/菌株降解活性黑5效能差异及机制比较[J]. 微生物学通报, 2023, 50(3): 938-953. 
					
					 | 
			
| [4] | 
					 秦秋浦. 偶氮类合成染料的微生物脱色与降解[J]. 应用化工, 2013, 8(增刊1): 172-177. 
					
					 | 
			
| [5] | 
					 张理军, 严群, 周子琳, 等. 硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ[J]. 环境工程, 2022, 40(11): 61-68. 
					
					 | 
			
| [6] | 
					 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53(3): 45-51. 
					
					 | 
			
| [7] | 
					 CHENG L, WEI M Y, HUANG L H, et al. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(Ⅱ) ions in bicarbonate aqueous solution[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3478-3485. 
						
					 | 
			
| [8] | 
					 LI B, DONG Y C, ZOU C, et al. Iron(Ⅲ)-Alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4199-4206. 
						
					 | 
			
| [9] | 
					 姚迎迎. 高级氧化技术在印染废水处理中的研究进展[J]. 广东化工, 2022, 49(4): 117-119. 
					
					 | 
			
| [10] | 
					 LIU Y B, ZHANG X M, DENG J H, et al. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient Fenton-like catalyst for degradation of sulfonamides[J]. Chemosphere, 2021, 277: 130305. 
						
					 | 
			
| [11] | 
					 张波, 戚永洁, 蒋素英, 等. 铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J]. 环境工程, 2018, 36(3): 44-48. 
					
					 | 
			
| [12] | 
					 PIGNATELLO J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36: 1-84. 
						
					 | 
			
| [13] | 
					 DA Y F, LIU Y, CHEN Y, et al. Promotion of O2 activation by ZIF-8 derived N-rich aluminum-graphite (Al-Gr-NPC) composite for non-radical degradation of antibiotic at neutral pH[J]. Separation and Purification Technology, 2023, 308: 122806. 
						
					 | 
			
| [14] | 
					 周小银, 朱铭, 赵聚姣, 等. 紫外光/超声芬顿处理工业废水的研究进展[J]. 环境工程, 2023, 41(增刊1): 1-8. 
					
					 | 
			
| [15] | 
					 VERMA M, HARITASH A K. Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102886. 
						
					 | 
			
| [16] | 
					 WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. 
						
					 | 
			
| [17] | 
					 LIU Y, WANG J L. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review[J]. Chemical Engineering Journal, 2023, 466: 143147. 
						
					 | 
			
| [18] | 
					 CHEN Q, LV F, ZHANG H, et al. Where should Fenton go for the degradation of refractory organic contaminants in wastewater?[J]. Water Research, 2023, 229: 119479. 
						
					 | 
			
| [19] | 
					 WANG L H, JIANG J, MA J, et al. A review on advanced oxidation processes homogeneously initiated by copper(Ⅱ)[J]. Chemical Engineering Journal, 2022, 427: 131721. 
						
					 | 
			
| [20] | 
					 CHEN L W, LI X C, ZHANG J, et al. Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine[J]. Environmental Science & Technology, 2015, 49(17): 10373-10379. 
						
					 | 
			
| [21] | 
					 MEI S C, LI L, HUANG G X, et al. Heterogeneous Fenton water purification catalyzed by iron phosphide (FeP)[J]. Water Research, 2023, 241: 120151. 
						
					 | 
			
| [22] | 
					 JIN Y Y, SUN S P, YANG X Y, et al. Degradation of ibuprofen in water by Fe(Ⅱ)-NTA complex-activated persulfate with hydroxylamine at neutral pH[J]. Chemical Engineering Journal, 2018, 337: 152-160. 
						
					 | 
			
| [23] | 
					 马红芳, 杨浩宇, 田委民, 等. 氨三乙酸强化零价铁/过一硫酸盐降解橙黄G[J]. 中国环境科学, 2021, 41(4): 1597-1607. 
					
					 | 
			
| [24] | 
					 DUAN J, PANG S-Y, WANG Z, et al. Hydroxylamine driven advanced oxidation processes for water treatment: a review[J]. Chemosphere, 2021, 262: 128390. 
						
					 | 
			
| [25] | 
					 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 368-370. 
					
					 | 
			
| [26] | 
					 姜成春, 庞素艳, 马军, 等. 钛盐光度法测定Fenton氧化中的过氧化氢[J]. 中国给水排水, 2006, 22(4): 88-91. 
					
					 | 
			
| [27] | 
					 HU Y, LI Y L, HE J Y, et al. EDTA-Fe(Ⅲ) Fenton-like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226: 256-263. 
						
					 | 
			
| [28] | 
					 LI Y F, SUN J H, SUN S P. Comparison of metoprolol degradation by Fe(Ⅲ)-NTA modified Fenton-like reaction in the absence and presence of manganese: efficiency and intermediates[J]. Chemical Engineering Journal, 2017, 313: 769-776. 
						
					 | 
			
| [29] | 
					 PENG S W, ZHANG W J, HE J, et al. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone[J]. Journal of Environmental Sciences, 2016, 41: 16-23. 
						
					 | 
			
| [30] | 
					 ZHANG D X, XIANG Y P, LIU G L, et al. Mechanism and controlling factors on rapid methylmercury degradation by ligand-enhanced Fenton-like reaction at circumneutral pH[J]. Chemosphere, 2023, 324: 138291. 
						
					 | 
			
| [31] | 
					 LIU Y Q, HE X X, FU Y S, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. 
						
					 | 
			
| [32] | 
					 DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(Ⅱ)/peroxydisulfate process[J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224. 
						
					 | 
			
| [33] | 
					 LI Z Y, LIU Y L, HE P N, et al. Further understanding the role of hydroxylamine in transformation of reactive species in Fe(Ⅱ)/peroxydisulfate system[J]. Chemical Engineering Journal, 2021, 418: 129464. 
						
					 | 
			
| [34] | 
					 MOTEKAITIS R J, MARTELL A E. The iron(Ⅲ) and iron(Ⅱ) complexes of nitrilotriacetic acid[J]. Journal of Coordination Chemistry, 1994, 31(1): 67-78. 
						
					 | 
			
| [35] | 
					 ZHOU P, ZHANG J, LIANG J, et al. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple[J]. Water Science and Technology, 2016, 73(3): 493-500. 
						
					 | 
			
| [36] | 
					 LIU Y Q, HE X X, DUAN X D, et al. Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical[J]. Chemical Engineering Journal, 2015, 276: 113-121. 
						
					 | 
			
| [37] | 
					 RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(Ⅱ)-activated persulfate process[J]. Journal of Hazardous Materials, 2014, 268: 23-32. 
						
					 | 
			
| [38] | 
					 LI X, ZHOU M H, PAN Y W. Degradation of diclofenac by H2O2 activated with pre-magnetization Fe0: influencing factors and degradation pathways[J]. Chemosphere, 2018, 212: 853-862. 
						
					 | 
			
| [39] | 
					 BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation[J]. Applied Catalysis B: Environmental, 2013, 134-135: 93-102. 
						
					 | 
			
| [40] | 
					 ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302: 526-534. 
						
					 |