Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
HE Jianwei, HUANG Xiaoyan, HUANG Ruonan, CAI Yang, ZHAO Fuyun. ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 148-156. doi: 10.13205/j.hjgc.202404018
Citation: HE Jianwei, HUANG Xiaoyan, HUANG Ruonan, CAI Yang, ZHAO Fuyun. ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 148-156. doi: 10.13205/j.hjgc.202404018

ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION

doi: 10.13205/j.hjgc.202404018
  • Received Date: 2023-05-13
    Available Online: 2024-06-01
  • To realize all-year-round air purification together with strengthening indoor ventilation in indoor environment, this study has numerically proposed a solar photocatalytic ventilation wall system coupling with hybrid ventilation and further investigated the diffusion characteristics of pollutants in winter and summer. Based on computational fluid dynamics, key parameters of solar radiation intensity and initial velocity have been comprehensively studied to analyze the effects on system pollutant removal rate and comprehensive evaluation index. The simulated results showed that the collaborative model for pollutant removal and hybrid ventilation is reliable and feasible. Especially, the comprehensive evaluation index for winter mode gradually increased from 0.00 to 1.00 with an increase in radiation intensity, while the summer model showed a negative correlation from 0.50 to 0.37. Increasing the initial velocity caused the comprehensive evaluation index of the winter model to decrease by up to 97%, while that of the summer model initially increased, then decreased and finally increased again. The adjustment of the external heat flow input and initial velocity has positive significance for promoting the removal of indoor pollutants.
  • loading
  • [1]
    CAI Y, HE J W, HUANG X Y, et al. An updated review of indoor pollutant purification by solar photocatalytic ventilation wall: materials, modelling and performance evaluation[J]. Indoor and Built Environment, 2023,32(7):1296-1318.
    [2]
    WHO. The Global Health Observatory: Household Air Pollution Attributable Deaths[R]. 2022.
    [3]
    王军, 叶蔚, 邵晓亮, 等. 室内通风与净化技术[M]. 北京:中国建筑工业出版社, 2020.
    [4]
    PARK K, WOO D, LEIGH S, et al. Impact of hybrid ventilation strategies in energy savings of buildings: in regard to mixed-humid climate regions[J]. Energies, 2022, 15(6): 1960.
    [5]
    郭娟, 王汉青. 基于Fluent的多元通风系统数值模拟分析[J]. 流体机械, 2013, 41(5): 29-33.
    [6]
    YU B D, YANG J C, HE W, et al. The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system[J]. Energy, 2019, 174: 420-435.
    [7]
    吴双应, 邱毅, 肖兰. 室内外环境温度对光伏光催化型Trombe墙性能和功能的影响[J]. 东北电力大学学报, 2021, 41(1): 31-40.
    [8]
    WU S Y, WANG T, XIAO L, et al. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system[J]. Solar Energy, 2019, 180: 489-500.
    [9]
    DAVIDSON L. Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low reynolds number κ-ε turbulence models[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 129-147.
    [10]
    YU B D, LI N S, JI J. Performance analysis of a purified Trombe wall with ventilation blinds based on photo-thermal driven purification[J]. Applied Energy, 2019, 255: 113846.
    [11]
    JIE J, HUA Y, GANG P, et al. Study of PV-Trombe wall assisted with DC fan[J]. Building and Environment, 2007, 42(10): 3529-3539.
    [12]
    XU Q J, ZHANG Y P, MO J H, et al. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence[J]. Environmental Science & Technology, 2011, 45(13): 5754-5760.
    [13]
    MAHMOOD A, WANG X, XIE X, et al. Degradation behavior of mixed and isolated aromatic ring containing VOCs: langmuir-Hinshelwood kinetics, photodegradation, in-situ FTIR and DFT studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105069.
    [14]
    CHEN B, CHEN X, DING Y H, et al. Shading effects on the winter thermal performance of the Trombe wall air gap: an experimental study in Dalian[J]. Renewable Energy, 2006, 31(12): 1961-1971.
    [15]
    FERNNDEZ-HERNNDEZ F, CEJUDO-LPEZ J, DOMNGUEZ-MUOZ F, et al. A new desiccant channel to be integrated in building faades[J]. Energy and Buildings, 2015, 86: 318-327.
    [16]
    WU S Y, XU L, XIAO L. Performance study of a novel multi-functional trombe wall with air purification, photovoltaic, heating and ventilation[J]. Energy Conversion and Management, 2020, 203: 112229.
    [17]
    SERRANO-ARELLANO J, GIJN-RIVERA M, RIESCO-VILA J, et al. Numerical investigation of transient heat and mass transfer by natural convection in a ventilated cavity: outlet air gap located close to heat source[J]. International Journal of Heat and Mass Transfer, 2014, 76: 268-278.
    [18]
    YOUNSI Z, KOUFI L, NAJI H. Numerical study of the effects of ventilated cavities outlet location on thermal comfort and air quality[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(11): 4462-4483.
    [19]
    张建良, 陈灿, 李静. PMV-PPD指标计算医院病房舒适温湿度[J]. 建筑热能通风空调, 2017, 36(3): 33-35

    ,46.
    [20]
    朱琦彬, 苏亚欣. 内置式PV-Trombe墙对室内通风特性的影响[J]. 建筑热能通风空调, 2015, 34(5): 80-82

    ,90.
    [21]
    YU B D, HOU J X, HE W, et al. Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification[J]. Applied Energy, 2018, 226: 365-380.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (64) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return