Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 5
May  2024
Turn off MathJax
Article Contents
XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
Citation: XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006

STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM

doi: 10.13205/j.hjgc.202405006
  • Received Date: 2023-04-28
    Available Online: 2024-07-11
  • In this study, the optimal partial nitrification (PN) process was achieved by adjusting the light intensity and algae concentration, and their effects on effluent quality, dissolved oxygen (DO) concentration, the number and enzyme activity of ammonia oxidizing bacteria (AOB), the content of algae photosynthetic pigments, microbial morphology and community structure were investigated. The results of water quality measurement showed that the nitrite accumulation rate reached 88.88% under the condition of 16000 Lux illumination intensity and 1170 mL Chlorella culture solution (OD680=1.6±0.4), achieving a good PN effect. The DO monitoring results showed that the reactor was always in the concentration range of 0.1~0.11 mg/L, and the algae concentration was the main factor affecting the DO concentration in the reactor. The ammonia monooxygenase (AMO) activity and amoA gene copy number of AOB bacteria, and the concentration of three photosynthetic pigments of algae gradually stabilized at the later stage of reactor operation, indicating that AOB bacteria and algae gradually formed a stable symbiotic system in the reactor. High-throughput sequencing results showed that Nitrosomonas and Chlorella were the main functional microorganisms, and the morphologies of two functional microorganisms were observed by scanning electron microscopy. In this paper, the effect of different algal oxygen supply conditions on the activity, quantity of functional microorganisms and microbial community structure in the PN process were investigated, which provided a theoretical reference for regulating algal oxygen supply during the start-up and stable operation of the process.
  • loading
  • [1]
    张馨文, 王荣震, 冯成业, 等. 生活污水短程硝化脱氮工艺的快速启动及稳定性研究[J]. 环境工程, 2022, 40(10): 9-14.
    [2]
    韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 39(1): 51-57

    ,17.
    [3]
    RAHIMI S, MODIN O, MIJAKOVIC I. Technologies for biological removal and recovery of nitrogen from wastewater[J]. Biotechnology Advances, 2020, 43: 107570.
    [4]
    GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review[J]. Chemosphere, 2015, 140: 85-98.
    [5]
    PAREDES D, KUSCHK P, MBWETTE T S A, et al. New aspects of microbial nitrogen transformations in the context of wastewater treatment: a review[J]. Engineering in Life Sciences, 2007, 7(1): 13-25.
    [6]
    ANTHONISEN A C, LOEHR R, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal-Water Pollution Control Federation, 1976, 48(5): 835-852.
    [7]
    冯思然, 朱顺妮, 王忠铭. 微藻污水处理研究进展[J]. 环境工程, 2019, 37(4): 57-62

    ,56.
    [8]
    CESAR BELTRAN-ROCHA J, DAGMAR BARCELO-QUINTAL I, GARCIA-MARTINEZ M, et al. Polishing of municipal secondary effluent using native microalgae consortia[J]. Water Science and Technology, 2017, 75(7): 1693-1701.
    [9]
    郑耀通, 吴小平, 高树芳. 固定化菌藻系统去除氨氮影响[J]. 江西农业大学学报, 2003(1): 99-102.
    [10]
    宋彧. 启动藻强化短程硝化-厌氧氨氧化反应器处理模拟腈纶废水的工艺研究[D].大连:辽宁师范大学, 2019.
    [11]
    李竺芯, 樊迪, 那娜, 等. 光照条件对菌藻共生系统单级脱氮的影响研究[J]. 环境科学与技术, 2019, 42(10): 78-82.
    [12]
    巩有奎, 李永波, 苗志加. 不同进水方式下短程反硝化过程中N2O产量[J]. 环境工程, 2018, 36(10): 59-63.
    [13]
    LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[M]//Methods in Enzymology. Academic Press, 1987: 350-382.
    [14]
    张峰峰, 周可, 谢凤行, 等. Pseudomonas alcaliphila AD-28的脱氮性能及其关键酶活性[J]. 微生物学通报, 2019, 46(9): 2166-2174.
    [15]
    徐晓庆, 苏命, 朱宜平, 等. 基于荧光定量PCR技术构建水源地典型致嗅物质2-甲基异莰醇的评估方法及其应用[J]. 环境工程学报, 2020, 14(11): 3208-3215.
    [16]
    ZHANG M, WANG S, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401.
    [17]
    STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
    [18]
    陈玉斌. 微藻曝气强化短程硝化/厌氧氨氧化生物低耗脱氮特性研究[D].大连:辽宁师范大学, 2021.
    [19]
    MANSER N D, WANG M, ERGAS S J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters, 2016, 3(4): 175-179.
    [20]
    CHEN J, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2013, 1827(2): 136-144.
    [21]
    RUIZ G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335.
    [22]
    ZHANG Y, WANG J, PENG S, et al. Autotrophic biological nitrogen removal in a bacterial-algal symbiosis system: formation of integrated algae/partial-nitrification/anammox biofilm and metagenomic analysis[J]. Chemical Engineering Journal, 2022, 439: 135689.
    [23]
    KASPARY T E, LAMEGO F P, CUTTI L, et al. Determination of photosynthetic pigments in fleabane biotypes susceptible and resistant to resistant to the herbicde glyphosate[J]. Planta Daninha, 2014, 32(2): 417-426.
    [24]
    BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312.
    [25]
    SLIEKERS A O, HAAIJER S C M, STAFSNES M H, et al. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology and Biotechnology, 2005, 68(6): 808-817.
    [26]
    ZHOU Y, LI X, CHEN J, et al. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: removal performance and reciprocal mechanism[J]. Chemosphere, 2023, 323: 138240.
    [27]
    LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253.
    [28]
    DYTCZAK M A, LONDRY K L, OLESZKIEWICZ J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J]. Water Research, 2008, 42(8/9): 2320-2328.
    [29]
    陈琳琳. 藻强化短程硝化-厌氧氨氧化工艺处理煤化工废水的脱氮效果研究[D].大连:辽宁师范大学, 2019.
    [30]
    XU Z, ZHANG L, GAO X, et al. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system[J]. Chemosphere, 2020, 261: 127670.
    [31]
    樊沈毅. AnAOB快速培养及PN-Anammox技术在高氨氮工业废水中的应用研究[D].无锡:江南大学, 2022.
    [32]
    黄子恒, 张立, 崔舒惠, 等. 冷冻PN/A颗粒污泥快速活化过程中的污泥形态与菌群演化特征分析[J]. 环境科学, 2022, 43(2): 920-927.
    [33]
    LI H, CHI Z F, YAN B X. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: performance, microbial community and toxic mechanism[J]. Journal of Environmental Sciences, 2019, 79(5): 244-252.
    [34]
    QIAN P, GARDINER A T, SIMOVA I, et al. 2.4-angstrom structure of the double-ring Gemmatimonas phototrophica photosystem[J]. Science Advances, 2022, 8(7): eabk3139.
    [35]
    AIRA M, OLCINA J, PEREZ-LOSADA M, et al. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates[J]. Applied Soil Ecology, 2016, 98: 103-111.
    [36]
    KANG H, KIM H, JOUNG Y, et al. Ferruginibacter paludis sp nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 2635-2639.
    [37]
    杨安娜, 陆云峰, 张俊红, 等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1): 119-127.
    [38]
    JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442-453.
    [39]
    王祥荣. 衣藻属的采集、培养[J]. 植物杂志, 1987(3): 23.
    [40]
    DAM H V, MERTENS A, SINKELDAM J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands[J]. Netherland Journal of Aquatic Ecology, 1994, 28(1): 117-133.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (97) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return